DOI QR코드

DOI QR Code

OxyR Regulon Controls Lipid Peroxidation-mediated Oxidative Stress in Escherichia coli

  • Yoon, Seon-Joo (Department of Biochemistry, College of Natural Sciences, Kyungpook National University) ;
  • Park, Ji-Eun (Department of Biochemistry, College of Natural Sciences, Kyungpook National University) ;
  • Yang, Joon-Hyuck (Department of Biochemistry, College of Natural Sciences, Kyungpook National University) ;
  • Park, Jeen-Woo (Department of Biochemistry, College of Natural Sciences, Kyungpook National University)
  • Published : 2002.05.31

Abstract

Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. The oxyR gene product regulates the expression of enzymes and proteins that are needed for cellular protection against oxidative stress. Upon exposure to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the Escherichia coli oxyR overexpression mutant was much more resistant to lipid peroxidation-mediated cellular damage, when compared to the oxyR deletion mutant in regard to growth kinetics, viability, and DNA damage. The deletion of the oxyR gene in E. coli also resulted in increased susceptibility of superoxide dismutase to lipid peroxidation-mediated inactivation. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in free radical-induced cellular damage. Also, the oxyR regulon plays an important protective role in lipid peroxidation-mediated cellular damage.

Keywords

References

  1. Bowen, S. W. and Hassan, H. M. (1988) Induction of the manganese-containing superoxide dismutase in Escherichia coli is independent of the oxidative stress (oxyR-controlled) regulon. J. Biol. Chem. 263, 14808-14811.
  2. Cerutti, P. A. (1985) Prooxidant states and tumor promotion. Science 227, 375-381. https://doi.org/10.1126/science.2981433
  3. Christman, M. F., Morgan, R. W., Jacobson, F. S. and Ames, B. N. (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41, 753-762. https://doi.org/10.1016/S0092-8674(85)80056-8
  4. Demple, B. and Halbrook, J. (1983) Inducible repair of oxidative DNA damage in Escherichia coli. Nature 304, 466-468. https://doi.org/10.1038/304466a0
  5. Fleming, J. E., Miguel, J., Cottrell, S. F., Yengoyan, L. S. and Economos, A. C. (1982) Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontology 28, 44-53. https://doi.org/10.1159/000212510
  6. Fraga, C. G. and Tappel, A. L. (1988) Damage to DNA concurrent with lipid peroxidation in rat liver slices. Biochem. J. 252, 893-896. https://doi.org/10.1042/bj2520893
  7. Greenberg, J. T., Monach, P., Chou, J. H., Josephy, P. D. and Demple, B. (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 6181-6185. https://doi.org/10.1073/pnas.87.16.6181
  8. Halliwell, B. (1987) Oxidants and human disease: some new concepts. FASEB J. 1, 358-364.
  9. Hruszkewycz, A. M. (1988) Evidence for mitochondrial DNA damage by lipid peroxidation. Biochem. Biophys. Res. Commun. 153, 191-197. https://doi.org/10.1016/S0006-291X(88)81207-5
  10. Inouye, S. (1984) Site-specific cleavage of double-strand DNA by hydroperoxide of linoleic acid. FEBS Lett. 172, 231-232. https://doi.org/10.1016/0014-5793(84)81131-X
  11. Kim, S. Y., Kim, R. H., Huh, T.-L. and Park, J.-W. (2001) $\alpha$-Phenyl-N-t-butylnitrone protects oxidative damage to HepG2 cells. J. Biochem. Mol. Biol. 34, 43-46.
  12. Kono, Y. and Fridovich, I. (1982) Superoxide radical inhibits catalase. J. Biol. Chem. 257, 5751-5754.
  13. Kristal, B. S., Koopmans, S. J., Jackson, C. T., Ikeno, Y., Park, B. J. and Yu, B. P. (1997) Oxidant-mediated repression of mitochondrial transcription in diabetic rats. Free Radic. Biol. Med. 22, 813-822. https://doi.org/10.1016/S0891-5849(96)00429-7
  14. Lee, M. H. and Park, J.-W. (1995) Lipid peroxidation products mediate damage of superoxide dismutase. Biochem. Mol. Biol. Int. 35, 1093-1102.
  15. Lee, S. M. and Park, J.-W. (1998) A yeast mutant lacking thiol-dependent protector protein is hypersensitive to menadione. Biochim. Biophys. Acta 1382, 167-175. https://doi.org/10.1016/S0167-4838(97)00172-6
  16. Morgan, R. W., Christman, M. F., Jacobson, F. S., Storz, G. and Ames, B. N. (1986) Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc. Natl. Acad. Sci. USA 83, 8059-8063. https://doi.org/10.1073/pnas.83.21.8059
  17. Munkres, K. D. (1976) Aging of Neurospora crassa IV. Mech. Ageing Dev. 5, 171-191. https://doi.org/10.1016/0047-6374(76)90017-8
  18. Park, J.-W., Cundy, K. C. and Ames, B. N. (1989) Detection of DNA adducts by high-performance lipid chromatography with electrochemical detection. Carcinogenesis 10, 827-832. https://doi.org/10.1093/carcin/10.5.827
  19. Park, J.-W. (1991) A correlation between oxygen radical-induced mutations and DNA adducts formation in Salmonella typhimurium. Korean Biochem. J. 24, 387-393.
  20. Park, J.-W. and Floyd, R. A. (1992) Lipid peroxidation products mediate the formation of 8-hydroxydeoxyguanosine in DNA. Free Radic. Biol. Med. 12, 245-250. https://doi.org/10.1016/0891-5849(92)90111-S
  21. Park, J.-W. and Floyd, R. A. (1994) Generation of strand breaks and formation of 8-hydroxy-2-deoxyguanosine in DNA by a thiol/$Fe^{3+}$/$O_{2}$-catalyzed oxidation system. Arch. Biochem. Biophys. 312, 285-291. https://doi.org/10.1006/abbi.1994.1311
  22. Reiss, U. and Tappel, A. L. (1973) Fluorescent product formation and changes in structure of DNA reacted with peroxidizing arachidonic acid. Lipids 8, 199-202. https://doi.org/10.1007/BF02544635
  23. Slater, T. F. (1984) Free radical mechanism in tissue injury. Biochem. J. 222, 1-15. https://doi.org/10.1042/bj2220001
  24. Storz, G., Christman, M. F., Sies, H. and Ames, B. N. (1987) Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 84, 8917- 8921. https://doi.org/10.1073/pnas.84.24.8917
  25. Tabatabaie, T. and Floyd, R. A. (1994) Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agent. Arch. Biochem. Biophys. 314, 112-119. https://doi.org/10.1006/abbi.1994.1418
  26. Ueda, K., Kobayashi, S., Morita, J. and Komano, T. (1985) Site-specific DNA damage caused by lipid peroxidation products. Biochim. Biophys. Acta 824, 341-348. https://doi.org/10.1016/0167-4781(85)90041-7

Cited by

  1. Antimicrobial strategies centered around reactive oxygen species – bactericidal antibiotics, photodynamic therapy, and beyond vol.37, pp.6, 2013, https://doi.org/10.1111/1574-6976.12026
  2. Microbial oxidative stress response: Novel insights from environmental facultative anaerobic bacteria vol.584, 2015, https://doi.org/10.1016/j.abb.2015.08.012
  3. Lipids and DNA oxidation in Staphylococcus aureus as a consequence of oxidative stress generated by ciprofloxacin vol.285, pp.1-2, 2006, https://doi.org/10.1007/s11010-005-9051-0
  4. Reduction of the monounsaturated fatty acid content of Escherichia coli results in increased resistance to oxidative damage vol.158, pp.Pt_5, 2012, https://doi.org/10.1099/mic.0.056903-0
  5. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria vol.525, pp.2, 2012, https://doi.org/10.1016/j.abb.2012.02.007
  6. Antioxidant enzymes expression inPseudomonas aeruginosaexposed to UV-C radiation vol.56, pp.7, 2016, https://doi.org/10.1002/jobm.201500753
  7. Potential roles for DNA replication and repair functions in cell killing by streptomycin vol.749, pp.1-2, 2013, https://doi.org/10.1016/j.mrfmmm.2013.07.009
  8. Aged TiO2-Based Nanocomposite Used in Sunscreens Produces Singlet Oxygen under Long-Wave UV and SensitizesEscherichia colito Cadmium vol.48, pp.9, 2014, https://doi.org/10.1021/es500216t
  9. Antioxidant Defense Mechanisms in Pseudomonas aeruginosa: Role of Iron-Cofactored Superoxide Dismutase in Response to UV-C Radiations vol.73, pp.2, 2016, https://doi.org/10.1007/s00284-016-1043-7
  10. Oxidative Stress Induced in Microorganisms by Zero-valent Iron Nanoparticles vol.26, pp.4, 2011, https://doi.org/10.1264/jsme2.ME11126
  11. Improved tolerance of recombinant Escherichia coli to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (otsBA) for the production of β-carotene vol.143, 2013, https://doi.org/10.1016/j.biortech.2013.06.034
  12. Analysis of aldehyde reductases from Gluconobacter oxydans 621H vol.85, pp.4, 2010, https://doi.org/10.1007/s00253-009-2154-x
  13. Hydrogen-Peroxide-Enhanced Nonthermal Plasma Effluent for Biomedical Applications vol.40, pp.8, 2012, https://doi.org/10.1109/TPS.2012.2200910
  14. Antibacterial Potential of an Antimicrobial Agent Inspired by Peroxidase-Catalyzed Systems vol.8, 2017, https://doi.org/10.3389/fmicb.2017.00680
  15. Circulating nitric oxide is modulated by recombinant human TSH administration during monitoring of thyroid cancer remnant vol.26, pp.12, 2003, https://doi.org/10.1007/BF03349156
  16. Selective effects of quercetin on the cell growth and antioxidant defense system in normal versus transformed mouse hepatic cell lines vol.502, pp.3, 2004, https://doi.org/10.1016/j.ejphar.2004.09.012
  17. Exposure to Anacardiaceae Volatile Oils and Their Constituents Induces Lipid Peroxidation within Food-Borne Bacteria Cells vol.17, pp.12, 2012, https://doi.org/10.3390/molecules17089728