DOI QR코드

DOI QR Code

A Product Inhibition Study on Adenosine Deaminase by Spectroscopy and Calorimetry

  • Published : 2002.05.31

Abstract

Kinetic and thermodynamic studies have been made on the effect of the inosine product on the activity of adenosine deaminase in a 50 mM sodium phosphate buffer, pH 7.5, at $27^{\circ}C$ using UV spectrophotometry and isothermal titration calorimetry (ITC). A competitive inhibition was observed for inosine as a product of the enzymatic reaction. A graphical-fitting method was used for determination of the binding constant and enthalpy of inhibitor binding by using isothermal titration microcalorimetry data. The dissociation-binding constant is equal to $140\;{\mu}M$ by the microcalorimetry method, which agrees well with the value of $143\;{\mu}M$ for the inhibition constant that was obtained from the spectroscopy method.

Keywords

References

  1. Agarwal, R. P. (1982) Inhibitors of adenosine deaminase. Pharmacol. Ther. 17, 399-429. https://doi.org/10.1016/0163-7258(82)90023-7
  2. Phillis, J. W., De Long, E. R. and Towner, K. J. (1985) Adenosine deaminase inhibitors enhance cerebral anoxic hyperemia in the rat. J. Cereb. Blood Flow Metab. 5, 295-299. https://doi.org/10.1038/jcbfm.1985.38
  3. Bhaumik, D., Medin, J., Gathy, K. and Coleman, M. S. (1993) Mutational analysis of active site residues of human adenosine deaminase. J. Biol. Chem. 268, 5464-5470.
  4. Blum, U. and Schwedt, G. (1998) Inhibition behavior of acid phosphatase, phosphodiesterase I and adenosine deaminase as tools for trace metal analysis and specification. Anal. Chim. Acta 360, 101-108. https://doi.org/10.1016/S0003-2670(97)00717-4
  5. Brady, T. G., OSullivan, W. (1967) A purification of adenosine deaminase from the superficial mucosa of calf intestinal. Biochim. Biophys. Acta 132, 127-137. https://doi.org/10.1016/0005-2744(67)90198-2
  6. Centelles, J. J., Franco, R. and Bozal, J. (1988) Purification and partial characterization of brain adenosine deaminase: inhibition by purine compounds and by drugs. J. Neurosci. Res. 19, 258-267. https://doi.org/10.1002/jnr.490190212
  7. Chang, Z., Nygaard, P., Chinualt, A. C. and Kellems, R. E. (1991) Deduced amino acid sequence of Escherichia coli adenosine deaminase reveals evolutionarily conserved amino acid residues: implications for catalytic function. Biochemistry 30, 2273-2280. https://doi.org/10.1021/bi00222a033
  8. Cooper, B. F., Sideraki, V., Wilson, D. K., Dominguez, D. Y., Clark, S. W., Quiocho, F. A. and Rudolph, F. B. (1997) The role of divalent cations in structure and function of murine adenosine deaminase. Protein Sci. 6, 1031-1037. https://doi.org/10.1002/pro.5560060509
  9. Daddona, P. E., Kelley, W. N. (1978) Human adenosine deaminase binding protein. Assay, purification and properties. J. Biol. Chem. 253, 4617-4623.
  10. Doddona, P. E., Schewach, D. S., Kelly, W. N., Argos, P., Markham, A. F. and Orkin, S. H. (1984) Human adenosine deaminase. cDNA and complete primary amino acid sequence. J. Biol. Chem. 259, 12101-12106.
  11. Glazer, R. I. (1980a) Adenosine deaminase inhibitors: their role in chemotherapy and immunosuppersion. Cancer Chemother. Pharmacol. 4, 227-235.
  12. Glazer, R. I. (1980b) 2'-Deoxycoformycin and other adenosine deaminase inhibitors. Rev. Drug Metab. Drug Interact. 3, 105-128.
  13. Giblett, E. R., Anderson, J. E., Cohen, F., Pollara, B. and Meuwissen, H. J. (1972) Adenosine deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 2, 1067-1069.
  14. Hirchhorn, R. and Ratech, H. (1980) Isoenzymes of adenosine deaminase; in Isoenzymes: Current Topics in Biological and Medical Research, Rattazi, M. C., Scandalia, J. G. and Whitt, G. S. (eds.), pp. 132-157, Alan, R. Liss, New York.
  15. Kaplan, N. O. (1955) Specific adenosine deaminase from intestinal. Methods in Enzymology 2, 473-480, Academic Press, New York. https://doi.org/10.1016/S0076-6879(55)02233-7
  16. Lee, N., Russel, N. H., Ganeshaguru, K., Jackson, B. F. A., Piga, A., Prentice, H. G., Foa, R. and Hoffbrand, V. (1984) Mechanism of deoxyadenosine toxicity in human lymphoid cells in vitro: relevance to the therapeutic use of inhibitors of adenosine deaminase. Br. J. Haemat. 56, 107-119. https://doi.org/10.1111/j.1365-2141.1984.tb01276.x
  17. McIlwain, H. (1983) Central nervous system studies on metabolic regulation and function; in Central Nervous System, Genazzari, E. and Herken, H. (eds.), pp. 3-11, Springer-Verlag, New York.
  18. Moosavi-Movahedi, A. A., Rahmani, Y. and Hakimelahi, G. H. (1993) Thermodynamic and kinetic studies of competitive inhibition of adenosine deaminase by using ring opened analogues of adenosine nucleoside. Int. J. Biol. Macromol. 15, 125-129. https://doi.org/10.1016/0141-8130(93)90010-J
  19. Murray, J. L., Loftin, K. C., Munn, C. G., Reuben, J. M., Mansell, P. W. A., Hersh, E. M. (1985) Elevated adenosine deaminase and purine nucleoside phosphorilase activity in peripheral blood null lymphocytes from patients with acquired immune deficiency syndrome. Blood 65, 1318-1324.
  20. Stone, T. W. (1989) Purine receptors and their pharmacological roles. Adv. Drug Res. 18, 291-429. https://doi.org/10.1016/B978-0-12-013318-5.50009-6
  21. Valentine, W. N., Paglia, D. E., Tartaglia, A. P. and Gilson, F. (1977) Hereditary hemolytic anemia with increased red cell adenosine deaminase (45 to 70-fold) and decreased adenosine triphosphate. Science 195, 783-786. https://doi.org/10.1126/science.836588
  22. Wilson, D, K., Rudolph, F. B., Quiocho, F. A. (1991) Atomic structure of adenosine deaminase with transition-state analogs: understanding catalysis and immunodeficiency mutations. Science 252, 1278-1284. https://doi.org/10.1126/science.1925539

Cited by

  1. A DNA-Protein Nanoengine for “On-Demand” Release and Precise Delivery of Molecules vol.44, pp.34, 2005, https://doi.org/10.1002/anie.200501214
  2. Cordycepin: A bioactive metabolite with therapeutic potential vol.93, pp.23, 2013, https://doi.org/10.1016/j.lfs.2013.09.030
  3. Thermodynamic Study of Myelin Basic Protein upon Interaction with [Hg2+] Using Extension Solvation Model vol.28, pp.5, 2010, https://doi.org/10.1002/cjoc.201090136
  4. Application of a simple calorimetric data analysis on the binding study of calcium ions by human growth hormone vol.83, pp.1, 2006, https://doi.org/10.1007/s10973-005-6954-7
  5. Fluorescence sensing of adenosine deaminase based on adenosine induced self-assembly of aptamer structures vol.138, pp.8, 2013, https://doi.org/10.1039/c3an36826b
  6. Moonlighting Adenosine Deaminase: A Target Protein for Drug Development vol.35, pp.1, 2015, https://doi.org/10.1002/med.21324
  7. Involvement of CD73, equilibrative nucleoside transporters and inosine in rhythm and conduction disturbances mediated by adenosine A1 and A2A receptors in the developing heart vol.63, 2013, https://doi.org/10.1016/j.yjmcc.2013.06.008
  8. Kinetic and Structural Analysis of the Inhibition of Adenosine Deaminase by Acetaminophen vol.19, pp.1, 2004, https://doi.org/10.1080/14756360310001632741
  9. A DNA-Protein Nanoengine for “On-Demand” Release and Precise Delivery of Molecules vol.117, pp.34, 2005, https://doi.org/10.1002/ange.200501214
  10. Simple ITC method for activity and inhibition studies on human salivary α-amylase vol.31, pp.6, 2016, https://doi.org/10.3109/14756366.2016.1161619
  11. A Structural and Calorimetric Study on the Interaction Between Jack Bean Urease and Cyanide Ion vol.38, pp.12, 2009, https://doi.org/10.1007/s10953-009-9471-7
  12. Kinetic, thermodynamic and statistical studies on the inhibition of adenosine deaminase by aspirin and diclofenac vol.22, pp.4, 2007, https://doi.org/10.1080/14756360701229085
  13. Binding properties and structural changes of human growth hormone upon interaction with cobalt ion vol.89, pp.3, 2007, https://doi.org/10.1007/s10973-006-7533-2
  14. Calorimetric evaluation of the activity and the mechanism of cellulases for the hydrolysis of cello-oligosaccharides accompanied by the mutarotation reaction of the hydrolyzed products vol.431, pp.1-2, 2005, https://doi.org/10.1016/j.tca.2005.01.025
  15. Application of a new method for data analysis of isothermal titration calorimetry in the interaction between human serum albumin and Ni2+ vol.35, pp.12, 2003, https://doi.org/10.1016/j.jct.2003.08.006
  16. Effects of Glyoxime and Dichloroglyoxime on Lysozyme: Kinetic and Structural Studies vol.1, pp.2, 2006, https://doi.org/10.3923/ajb.2006.153.161
  17. A survey of the year 2002 literature on applications of isothermal titration calorimetry vol.16, pp.6, 2003, https://doi.org/10.1002/jmr.648
  18. Thermodynamic Study of the Binding of Mercury Ion to Human Growth Hormone at Different Temperatures vol.40, pp.4, 2011, https://doi.org/10.1007/s10953-011-9668-4
  19. Binding Properties of Adenosine Deaminase Interacted with Theophylline vol.52, pp.10, 2004, https://doi.org/10.1248/cpb.52.1179
  20. Application of a simple calorimetric data analysis on the binding study of cyanide ions by Jack bean urease vol.21, pp.4, 2010, https://doi.org/10.1016/j.cclet.2009.10.021
  21. Electrophoretic affinity measurements on microchip. Determination of binding affinities between diketopiperazine receptors and peptide ligands vol.28, pp.11, 2007, https://doi.org/10.1002/elps.200600545
  22. Analysis of ligand binding to proteins using molecular dynamics simulations vol.254, pp.2, 2008, https://doi.org/10.1016/j.jtbi.2008.04.036
  23. A study on the inhibition of adenosine deaminase vol.23, pp.2, 2008, https://doi.org/10.1080/14756360701475233
  24. Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue vol.827, pp.1-3, 2007, https://doi.org/10.1016/j.molstruc.2006.05.004