Adherence of Salivary Proteins to Various Orthodontic Brackets

다양한 교정용 브라켓 표면에 부착하는 타액단백질에 관한 연구

  • Ahn, Sug-Joon (Department of Orthodontics, College of Dentistry, Seoul National University) ;
  • Ihm, Jong-An (Department of Orthodontics, College of Dentistry, Seoul National University) ;
  • Nahm, Dong-Seok (Department of Orthodontics, College of Dentistry, Seoul National University)
  • 안석준 (서울대학교 치과대학 교정학교실) ;
  • 임종안 (서울대학교 치과대학 교정학교실) ;
  • 남동석 (서울대학교 치과대학 교정학교실)
  • Published : 2002.12.01

Abstract

The principal aims of this study were to identify the composition of salivary pellicles formed on various orthodontic brackets and to obtain a detailed information about the protein adsorption profiles from whole saliva and two major glandular salivas. Four different types of orthodontic brackets were used. All were upper bicuspid brackets with a $022{\times}028$ slot Roth prescription; stainless steel metal, monocrystalline sapphire, polycrystalline alumina, and plastic brackets. Bracket pelicles were formed by the incubation of orthodontic brackets with whole saliva, submandibular-sublingual saliva, and parotid saliva for 2 hours. The bracket pellicles were extracted and confirmed by employing sodium dodecyl sulfatepolyacrylamide gel electrophoresis, Western transfer methods, and immunodetection. The results showed that low-molecular weight salivary mucin, ${\alpha}-amylase$, secretory IgA (sIgA), acidic proline-rich proteins, and cystatins were attached to all of these brackets regardless of the bracket types. High-molecular weight mucin, which promotes the adhesion of Streptococcus mutans, did not adhere to uy orthodontic brackets. Though the same components were detected in all bracket pellicles, however, the gel profiles showed qualitatively and quantitatively different pellicles, according to the origins of saliva and the bracket types. In particular, the binding of sIgA was more prominent in the pellicles from parotid saliva and the binding of cystatins was prominent in the pellicles from the form plastic brackets. This study indicates that numerous salivary proteins adhere to the orthodontic brackets and these salivary proteins adhere selectively according to bracket types and the types of the saliva.

본 연구의 목적은 다양한 교정용 브라켓의 표면에 형성되는 타액성 피막의 조성을 확인하고, 전타액, 악하선타액 및 이 하선타액에서 유래하는 타액성 피막의 성분을 비교하는 것이다. 네 가지 서로 다른 종류의 교정용 브라켓을 본 연구에 사용하였다. 이들은 $022{\times}028$ Roth Prescription의 상악 소구치 브라켓으로 조성은 다음과 같다: 스테인레스 스틸, 단결정 사파이어, 다결정 알루미나 및 플라스틱 브라켓. 교정용 브라켓을 각각 전타액, 이하선타액 및 악하선타액에 2시간 배양하여 타액성 피막을 형성시켰다 브라켓 피막의 타액성분은 sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western transfer method 및 면역검출법을 통해 확인하였다. 이 결과 low-molecular weight salivary mucin, ${\alpha}-amylase$, secretory IgA (sIgA), acidic proline-rich proteins, cystatins 등이 모든 브라켓의 타액성 피막에 존재하였으며, 치아우식증의 원인균인 Streptococcus mutans의 부착을 촉진시키는 타액단백질인 high-molecular weight mucin은 어떤 브라켓에도 부착하지 않았다. 그러나, 비록 동일한 타액단백질이 모든 브라켓에서 발견되었지만, 타액단백질 부착 양상은 타액의 종류 및 브라켓의 종류에 따라 양적 및 질적으로 다르게 나타났다. 특히 sIgA는 이하선타액에서 유래한 브라켓 피막에 더 많이 부착하였고, cystatins의 경우는 플라스틱 브라켓에서 유래한 브라켓 피막에 더 많이 존재하였다 본 연구는 다양한 타액단백질이 교정용 브라켓에 부착하며, 타액단백질이 타액의 출처 및 브라켓의 종류에 따라 교정용 브라켓의 표면에 선택적으로 부착함을 나타내었다.

Keywords

References

  1. Edgerton M, Lo SE, Scannapieco FA. Experimental salivary pellicles formed on titanium surfaces mediate adhesion of streptococci. Int J Oral Maxillofac Implants 1996 : 11 : 443-9
  2. Edgerton M, Levine MJ. Characterization of acquired denture pellicle from healthy and stomatitis patients. J Prosthet Dent 1992 : 68 : 683-91 https://doi.org/10.1016/0022-3913(92)90387-P
  3. Carlen A, Borjesson AC, Nikdel K, Olsson J. Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, andin vitro hydroxyapatite. Caries Res 1998 : 32 : 447-55 https://doi.org/10.1159/000016486
  4. Lee SJ, Kho HS, Lee SW, Yang WS. Experimental salivary pellicles on the surfaces of orthodontic materials. Am J Orthod Dentofac Orthop 2001 : 119: 59-66 https://doi.org/10.1067/mod.2001.110583
  5. Gibbons RJ. Bacterial adhesion to oral tissues: A model for infectious diseases. J Dent Res 1989 : 68 : 750-60 https://doi.org/10.1177/00220345890680050101
  6. Shahal Y, Steinberg D, Hirschfeld Z, Bronshteyn M. Invitro bacte-rial adherence onto pellicle-coated aesthetic restorative materials. J Oral Rehabil 1998 : 25 : 52-8 https://doi.org/10.1046/j.1365-2842.1998.00588.x
  7. Carlen A, Olsson J, Borjesson AC. Saliva-mediated binding in vitro and prevalence in vivo of Streptococcus mutans. Arch Oral Biol 1996: 41 : 35-9 https://doi.org/10.1016/0003-9969(95)00099-2
  8. Gorelick L, Geiger AM, Gwinnett AJ. Incidence of white spot for-mation after bonding and banding. Am J Orthod 1982 : 81 : 93-8 https://doi.org/10.1016/0002-9416(82)90032-X
  9. Balenseifen JW, Madonia JV. Study of dental plaque in orthodontic patients. J Dent Res 1970 : 49 : 320-4 https://doi.org/10.1177/00220345700490022101
  10. Menzaghi N, Saletta M, Garattini G, Brambilla E, Strohmenger L. Changes in the yeast oral flora in patients in orthodontic treatment. Prev Assist Dent 1991 : 17: 26-30
  11. Bishara SE, Olsen ME, Von Wald L. Evaluation of debonding characteristics of a new collapsible ceramic bracket. Am J Orthod Dentofac Orthop 1997 : 112 : 552-9 https://doi.org/10.1016/S0889-5406(97)70083-0
  12. Bishara SE, Olsen ME, VonWald L, Jakobsen JR. Comparison of the debonding characteristics of two innovative ceramic bracket designs. Am J Orthod Dentofac Orthop 1999 : 116 : 86-92 https://doi.org/10.1016/S0889-5406(99)70307-0
  13. Hershey H. The orthodontic appliance: esthetic considerations. J Am Dent Assoc 1988 : 117 : 29E-34E https://doi.org/10.14219/jada.archive.1988.0038
  14. Scott GE Jr. Fracture toughness and surface cracks-the key to understanding ceramic brackets. Angle Orthod 1988 : 58 : 5-8
  15. Kusy RP. Morphology of polycrystalline alumina brackets and its relationship to fracture toughness and strength. Angle Orthod 1988: 58 : 197-203
  16. Swartz M. Ceramic brackets. J Clin Orthod 1988 : 22 : 82-8
  17. Birnie D. Ceramic brackets. Br J Orthod 1990 : 17: 71-4 https://doi.org/10.1179/bjo.17.1.71
  18. Block PL, Brottman S. A method of submaxillary saliva collection without cannulization. N Y State Dent J 1962 : 28 : 116-8
  19. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970: 227 : 680-5 https://doi.org/10.1038/227680a0
  20. Burnette WN. Western blotting: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 1981 : 112 : 195-203 https://doi.org/10.1016/0003-2697(81)90281-5
  21. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci U.S.A 1979: 76 : 4350-4 https://doi.org/10.1073/pnas.76.9.4350
  22. Mizrahi E. Surface distribution of enamel opacities following orthodontic treatment. Am J Orthod 1983 :84 : 323-31 https://doi.org/10.1016/S0002-9416(83)90348-2
  23. Mizrahi E. Enamel demineralization following orthodontic treatment. Am J Orthod 1982 : 82 : 62-7 https://doi.org/10.1016/0002-9416(82)90548-6
  24. Ocaard B, Rolla G, Arends J. Orthodontic appliances and enamel demineralization Part 1. Lesion development. Am J Orthod Dentofac Orthop 1988 : 94 : 68-73 https://doi.org/10.1016/0889-5406(88)90453-2
  25. Jensen JL, Lamkin MS, Oppenheim FG. Adsorption of salivary proteins to hydroxyapatite: A comparison between whole saliva and glandular salivary secretions. J Dent Res 1992 : 71 : 1569-76 https://doi.org/10.1177/00220345920710090501
  26. Carlen A, Boerjesson AC, Nikdel K, Olsson J. Composition of pellicles formed in vivo on tooth surfaces in differenct parts of the dentition, and in vitro on hydroxyapatite. Caries Res 1998: 32 : 447-55 https://doi.org/10.1159/000016486
  27. Scannapieco FA, Bergey EJ, Reddy MS, Levine MJ. Characteri-zation of salivary-amylase binding to Streptococcus sanguis. Infect Immun 1989 :57 : 2853-63
  28. Kilian M, Nyvad B. Ability to bind salivary-amylase discriminates certain viridans group streptococcal species. J Clin Microbiol 1990: 28 : 2576-7
  29. Murray PA, Prakobphol A, Lee T, Hoover CI, Fisher SJ. Adherence of oral streptococci to salivary glycoproteins. to apatitic surfaces Infect Immun 1992 : 60 : 31-8
  30. Liljemark WF, Bloomquist CG, Ofstehage JC. Aggregation and adherence of Streptococcus sanguis: Role of human salivary immunoglobulin A. Infect Immun 1979 : 26 : 1104-10
  31. Gibbons RJ, Hay DI, Schlesinger DH. Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii. Infect Immun 1991 : 59 : 2948-54
  32. Gibbons RJ, Hay DI. Adsobred salivary acidic proline-rich proteins contribute to the adhesion of Streptococcus mutans JBP to apatitic surfaces. J Dent Res 1989: 68 : 1303-7 https://doi.org/10.1177/00220345890680090201
  33. Gibbons RJ, Cohen L, Hay DI. Strains of Streptococcus mutans and Streptococcus sorbinus attach to different pellicle receptors Infect Immun 1986 : 52 : 555-61
  34. Loomis RE, Prakobphol A, Levine MJ, Reddy MS, Jones PC. Biochemical and biophysical comparison of two mucins from human submandibular-sublingual saliva. Arch Biochem Biophys 1987: 258 : 452-64 https://doi.org/10.1016/0003-9861(87)90366-3
  35. Prakobphol A, Levine MJ, Tabak LA, Reddy MS. Purification of a low-molecular weight, mucin-type glycoprotein from human submandibular-sublingual saliva. Carbohydr Res 1982 : 108: 111-22 https://doi.org/10.1016/S0008-6215(00)81896-0
  36. Biesbrock AR, Reddy MS, Levine MJ. Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens. Infect Immun 1991 : 59 : 3492-7
  37. Baier RE, Glantz POJ. Characterization of oral in vivo films formed on different types of solid surfaces. Acta Odontol Scand 1978: 36: 289-301 https://doi.org/10.3109/00016357809029079
  38. Ruan MS, Di Paola C, Mandel ID. Quantitative immunochemistry of salivary proteins adsorbed in vitro to enamel and cementum from caries-resistant and canes-susceptible human adults. Arch Oral Biol 1986 : 31 : 597-601 https://doi.org/10.1016/0003-9969(86)90083-X
  39. AI-Hashimi I, Levine MJ. Characterization of in vivo salivary-derived enamel pellicle. Arch Oral Biol 1989 : 34 : 289-95 https://doi.org/10.1016/0003-9969(89)90070-8