DOI QR코드

DOI QR Code

Combined Effect of 2,4,6-trinitrotoluene(TNT) and Cadmium on Uptake and Phytotransformation of TNT by Abutilion avicennae

TNT(2,4,6-trinitrotoluene)와 카드뮴의 복합오염이 어저귀의 TNT흡수 및 생물학적 전환에 미치는 영향

  • 김선영 (이화여자대학교 생명과학과) ;
  • 배범한 (경원대학교 호목환경공학과) ;
  • 장윤영 (광운대학교 환경공학과) ;
  • 이인숙 (이화여자대학교 생명과학과)
  • Published : 2002.06.30

Abstract

Most of army depots contaminated with co-contaminants, 2,4,6-trinitrotoluene(TNT) and heavy metals. In phytoremediation for the TNT, heavy metals may inhibit mineralization, transformation and sequestration of TNT by the plant. We studied effect of cadmium on TNT degradation and transformation by Abutilion avicennae in hydroponic cultures. When cultured in 20 mgTNT/L and 1.3 mgCd/L, the plant displayed phytotoxicities; reduction of leaf fresh, leaf roil, chlorosis, leaf loss and fresh weight loss. Phytotoxicity was severer in the combined contaminants than in single contaminant. Because A. avicennae uptake just a little cadmium, 1.3 mgCd/L included in the TNT medium did not influece significantly TNT transformation, translocation and distribution by A. avicennae. Therefore, the soil solution containing cadmium would not affect TNT degradation by Abutilion avicennae in Army depots polluted with TNT.

군사지역은 TNT와 같은 화약물질이 중금속과 복합으로 오염되어 있다. 따라서 TNT에 대해 식물상 복원공법을 적용할 때 중금속이 식물체의 오염물 제거, 변환, 축적 능력에 영향을 줄 것으로 예상된다. 본 연구에서는 토착 야초류인 어저귀(Abutilion avicennae)를 TNT와 Cd으로 복합 오염된 배지에 서 수경재배하여 카드뮴이 식물에 의한 TNT 제거 및 변환에 미치는 영향을 조사하였다. 그 결과, 20 mgTNT/L와 1.3 mgCd/L이 복합으로 존재할 때 잎의 탄력 감소, 말림 현상, 황백화 현상, 낙엽형성, 생체량 감소 등과 같은 식물 독성효과가 상승하였다. 그러나, 어저귀는 소량의 카드뮴만을 흡수하는 종으로 배지내 카드뮴이 1.3 mg/L 존재하더라도 TNT제거, 변환, 이동 및 니트로기의 환원위치에 유의적인 영향을 받지 않는다. 따라서 카드뮴과 TNT로 복합오염된 지역에 어저귀를 식재하면 TNT를 효과적으로 제거하리라 사료된다.

Keywords

References

  1. 김현아, 배범한, 장윤영, 이인숙. 2002. 철광산 및 포사격장 식물의 중금속 축적에 관한 연구. 한국생태학회지 25:7-14
  2. 배범한, 김선영, 이인숙, 장윤영. 2001. 2,4,6-trinitrotoluene에 대해내성을 지닌 토착 식물종 선정에 대한 연구. 한국지하수토양환경학회지 6: 3-11
  3. Bhadra, R., D.G. Wayment, J.B. Hughes and J.V. Shanks. 1999. Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ. Sci. Technol. 33:446-452 https://doi.org/10.1021/es980635m
  4. Cho, U.H. and J.O. Park, 1999. Distribution and phytotoxicity of cadmium in tomato seedlings. Journal of Plant Biology 42:49-56 https://doi.org/10.1007/BF03031146
  5. Crockett, A.B., Craig, H.D., Jenkins, T.F. and Sisk, W.E. 1995. Fietd sampling and selecting on-site analytical methods for explosives in soil. EPA/540/S-97/501, pp.1-9
  6. Degraeve, N. 1981. Carcinogenic, teratogenic and mutagenic effects of cadmium. Mutat. Res. 86:115-135
  7. Dodard, S.G., A.Y. Renoux and J. Hawari. 1999. Ecotoxicity characterization of dinitrotoluenes and some of their reduced metabolites. Chemosphere 38:2071-2079 https://doi.org/10.1016/S0045-6535(98)00423-8
  8. Fiorella, P.D. and J.C. Spain. 1997. Transformation of 2,4,6-trini-trotoluene by Pseudomonas pseudoakaligegls JS52. Appl. Environ. Microbiol. 63: 2007-2015
  9. Hughes, J.B., J. Shanks, M. Vanderford, J. Lauritzen and R. Bhadra. 1997. Transformation of TNT by aquatic plants and plant tissue cultures. Enviro. Sci. Technol. 31: 266-271 https://doi.org/10.1021/es960409h
  10. Pavlostathis, S.G., K.L. Comstock, M.E. Jacobson and F.M. Saunders. 1998. Transformation of 2,4,6-trinitroto1uene(TNT) by the aquatic plant Myriophyllum spicatum. Environ. Toxic. Chem. 17: 2266-2273 https://doi.org/10.1897/1551-5028(1998)017<2266:TOTBTA>2.3.CO;2
  11. Prasad, M.N.V. 1995. Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany 35:525-545 https://doi.org/10.1016/0098-8472(95)00024-0
  12. Schaefer, K.W. and F. Boeren. 1997. International experience and expertize in registration, investigation, assessment, and clean-up of contaminated military sites. Research Project No. 10340102/01 UBA-FB 97-012/e Federal Environmental Agency
  13. Singh. J., G. Chawla, S.H.N. Naqvi and P.N. Viswanathan. 1994. Combined effect of cadmium and linear alkyl benzene sulfonate on Lemna minor L. Ecotoxicology 3:59-67 https://doi.org/10.1007/BF00121388
  14. Smock, L.A., D.L. Stoneburner and J.R. Clark. 1997. The toxic effects of trinitrotoluene(TNT) and its primary degradatiom products on two species of algae and the fathead minnow. Wat. Res. 31:266-271
  15. Sun, W.H., G.L. Horst, R.A. Drijber and T.E. Elthon. 2000. Fate of 2,4,6-trinitrotoluene in axenic sand culture systems contain-ing smooth bromegrass. Environ. Toxicol. Chem. 19:2038-2046 https://doi.org/10.1897/1551-5028(2000)019<2038:FOTIAS>2.3.CO;2
  16. Thompson, P.L, L.A. Ramer, A.P. Guffey and J.L. Schnoor. 1998. Decieased transpiration in poplar tree exposed to 2,4,6-trini-trotoluene. Environ. Toxicol. Chem. 17: 902-906 https://doi.org/10.1897/1551-5028(1998)017<0902:DTIPTE>2.3.CO;2
  17. Trapp, S. and J.C. McFarlane 1995. Plant contamination : Modelling and Simulation of Organic Chemical Process, Lewis Publisher, Boca Raton
  18. US EPA. 1993. Approaches for the remediation of federal facility sites contaminated with explosives or radioactive wastes. EPA/625/R-93/013
  19. US EPA. 1989. Office of Drinking Water. Health Advisory on 2,4,6-trinitrotoluene. PB90-273566