신연 골형성술에 있어서의 분자생물학적 최신 지견

CURRENT REVIEW OF MOLECULAR BIOLOGY IN DISTRACTION OSTEOGENESIS

  • 지유진 (가톨릭대학교 치과학교실 구강악안면외과) ;
  • 송현철 (가톨릭대학교 치과학교실 구강악안면외과) ;
  • 김여갑 (경희대학교 치과대학 구강악안면외과학교실) ;
  • 김진 (가톨릭대학교 치과학교실 구강악안면외과) ;
  • 김창현 (가톨릭대학교 치과학교실 구강악안면외과)
  • Jee, Yu-Jin (Division of Oral & Maxillofacial Surgery, Department of Dentistry, The Catholic University) ;
  • Song, Hyun-Chul (Division of Oral & Maxillofacial Surgery, Department of Dentistry, The Catholic University) ;
  • Kim, Yeo-Gab (Dept. of Oral and Maxillofacial surgery, college of Dentistry, Kyung Hee University) ;
  • Kim, Jin (Division of Oral & Maxillofacial Surgery, Department of Dentistry, The Catholic University) ;
  • Kim, Chang-Hyen (Division of Oral & Maxillofacial Surgery, Department of Dentistry, The Catholic University)
  • 발행 : 2002.12.31

초록

Distraction osteogenesis is a well-established clinical treatment for limb length discrepancy and skeletal deformities. Appropriate mechanical tension-stress is believed not to break the callus but rather to stimulate osteogenesis. In contrast to fracture healing, the mode of bone formation in distraction osteogenesis is primarily intramembranous ossification. Although the biomechanical, histological, and ultrastructural changes associated with distraction osteogenesis have been widely described, the basic biology of the process is still not well known. Moreover, the molecular mechanisms in distraction osteogenesis remain largely unclear. Recent studies have implicated the growth factor cascade is likely to play an important role in distraction. And current reserch suggested that mechanical tension-stress modulates cell shape and phenotype, and stimulates the expression of the mRNA for bone matrix proteins. This article presents the hypotheses and current research that have furthered knowledge of the molecular biology that govern distraction osteogenesis. The gene regulation of growth factors and extracellular matrix proteins during distraction osteogenesis are discussed in this article. It is believed that understanding the biomolecular mechanisms that mediate distraction osteogenesis may guide the development of targeted strategies designed to improve distraction osteogenesis and accelerate bone healing.

키워드

참고문헌

  1. Codivilla A: On the means of lengthening in the lower limb, the muscles and tissues which are shortened through deformity. Am J Orthop Surg 1905;2:353-369
  2. Ilizarov GA: The tension-stress effect on the genesis and growth of tissues: I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop 1989;238:249
  3. Ilizarov GA: The tension-stress effect on the genesis and growth of tissues: II. The influence of the rate and frequency of distraction. Clin Orthop 1989;239:263
  4. Snyder CC, Levine GA, Swanson HM, Browne EZ:Mandibular lengthening by gradual distraction. Plast Reconstr Surg 1973;51:506-508 https://doi.org/10.1097/00006534-197305000-00003
  5. McCarthy JG, Schreiber J, Karp NS, Thorne CH, Grayson BH: Lengthening the human mandible by gradual distraction. Plast Reconstr Surg 1992;89:1-10 https://doi.org/10.1097/00006534-199289010-00001
  6. Rowe NM, Mehrara BJ, Dudziak ME, Steinbrech DS, Mackool RJ, Gittes GK et al: Rat mandibular distraction osteogenesis: Part I. Histologic and radiographic analysis. Plast Reconstr Surg 1998; 102:2022-2032 https://doi.org/10.1097/00006534-199811000-00033
  7. Mehrara BJ, Rowe NM, Steinbrech DS, Dudziak ME, Saadeh PB, McCarthy JG et al : Rat mandibular distraction osteogenesis: II, Molecular analysis of transforming growth factor beta 1 and osteocalcin gene expression. Plast Reconstr Surg 1999;103:536-547 https://doi.org/10.1097/00006534-199902000-00026
  8. Warren SM, Mehrara BJ, Steinbrech DS, Paccione MF, Greenwald JA, Spector JA et al : Rat mandibular distraction osteogenesis. Part III Gradual distraction versus acute lengthening. Plast Reconstr Surg 2001;107:441-453 https://doi.org/10.1097/00006534-200102000-00021
  9. 김부경, 신상훈, 김종렬: 백서경골에서 신연속도에 따른 골형성 비교 연구. 대구외지 2000;26:6:620-627
  10. 김기영, 유선열: 가토에서 하악골 신연 양에 따른 하치조신경의 조직학적 변화. 대악성외지 1998;20:3:250-255
  11. 윤경인, 박재억: 하악골 신연술후 생성된 신생골의 조직학적 및 면역화학적 소견. 대악성외지 2001;23:3:258-262
  12. 오유근, 오희균, 유선열: 구내 신연장치를 이용한 치조골 신연에 미치는 잠복기의영향. 대악성외지 2001;23:4:324-331
  13. 정현, 오희균, 유선열: 치조골 신연후 임프란트 매식시기에 따른 골유착 효과. 대구외지 2000;26:3:238-244
  14. 김명진, 윤필영, 신동준, 김수경, 김종원, 김규식: Callus distraction method를 이용한 하악골 신장술: 계단골절단 술식의 적용. 대악성외지. 2000;22:2:254-261
  15. 박영욱, 차봉근, 김지혁: 점진적 Distraction Technique을 이용한 상악골의 전방이동. 대악성외지. 2000;22:6:687-696
  16. 김진, 윤현중: 악안면 기형 환자에서 악골 신장술의 적용. 대악성외지. 2000;22:6:657-663
  17. 임순모, 안병근, 박영주, 박희건, 박준우, 이건주 외: 성견 하악 골체부 신장시 신장부위의 증식세포핵항원과 제 1형 교원질 발현에 관한 연구. 대구외지 2001;27:5:385-393.16
  18. 백선호, 안병근, 박영주, 박희건, 박준우, 이건주 외: 성견 하악골 절단 후 기계적 골 견인에 의해 형성된 골 신장부에 대한 시기별 조직학적 변화. 대구외지 2001;27:5:404-413
  19. 송정호, 신상훈, 김종렬 : 백서 하악골에서 신연빈도에 따른 골형성 비교연구. 대악성외지 2002;24:2:115-125
  20. 류수장, 이충국, 최병호: 성견 하악골의 신연 부위에서 골형성에 대한 혈소판-풍부 혈장의 효과. 대구외지 2001;27:6:498-510
  21. Kojimoto H, Yasui N, Goto T, Matsuda S, Shimomura Y:Bone lengthening in rabbits by callus distraction. J Bone Joint Surg(Br) 1988;70B:543-549
  22. Yasui N, Sato M, Ochi T, Kimura T, Kawahata H, Nomura S: Three modes of ossification during distraction osteogenesis in the rat. J Bone Joint Surg Br 1997;79:5:824-830. https://doi.org/10.1302/0301-620X.79B5.7423
  23. Ueda M, Matsuno M, Sakai K, Hata KI: Mechanisms of new bone formation during distraction osteogenesis a preliminary report: Samchukov ML, Cope JB, Cherkashin AM Craniofacial Distraction Osteogenesis. Mosby 2001;37-41
  24. Sato M, Yaui N, Nakase T, Kawahata H, Sugimoto M, Hirota S et al: Expression of bone matrix proteins mRNA during distraction osteogenesis. J Bone Miner Res 1998;13:1221-1231 https://doi.org/10.1359/jbmr.1998.13.8.1221
  25. Buckley MJ, Banes AJ, Jordan RD: The effects of mechanicl strain on osteoblasts in vitro. J Oral Maxillofac Surg 1990;48:276-282 https://doi.org/10.1016/0278-2391(90)90393-G
  26. Burger EH, Klein-Nulend J, Veldhuijzen JP: Mechanical stress and ostogenesis in vitro. J Bone Miner Res. Suppl 1992;2:S397-401
  27. Wahl SM: Transforming growth factor $\beta$: the good, the bad, and the ugly. J Exptl Med 1994;180:1587-1590. https://doi.org/10.1084/jem.180.5.1587
  28. Yeung HY, Lee KM, Fung KP, Leung KS: Sustained expression of transforming growth factor-beta1 by distraction during distraction osteogenesis. Life Sci 2002;24:71(1):67-79 https://doi.org/10.1016/S0024-3205(02)01575-8
  29. Critchow MA, Bland YS, Ashhurst DE: The effect of exogenous transforming growth factor-beta 2 on healing fractures in the rabbit. Bone 1995;16:521-527 https://doi.org/10.1016/8756-3282(95)00085-R
  30. Rauch F, Lauzier D, Travers R, Glorieux F, Hamdy R:Effects of locally applied transforming growth factorbeta 1 on distraction osteogenesis in a rabbit limblengthening model. Bone 2000a;26:619-624 https://doi.org/10.1016/S8756-3282(00)00283-0
  31. Miyazono K: Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins. Bone 1999;25:91-93 https://doi.org/10.1016/S8756-3282(99)00113-1
  32. Sato M, Ochi T, Nakase T, Hirota S, Kitamura Y, Nomura S et al: Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J Bone Miner Res 1999;14:1084-1095 https://doi.org/10.1359/jbmr.1999.14.7.1084
  33. Rauch F, Lauzier D, Croteau S, Travers R, Glorieux FH, Hamdy R: Temporal and spatial expression of bone morphogenetic protein-2, -4, -7 during distraction osteogenesis in a rabbits. Bone 2000b;27:453-459 https://doi.org/10.1016/S8756-3282(00)00337-9
  34. Rosen CJ, Donahue LR, Hunter S: Insulin-like growth factors and bone: the osteoporosis connection. Proc Soc Exptl Biol Med 1994;206:83-102 https://doi.org/10.3181/00379727-206-43726
  35. Baxter RC: Insulin-like growth factor(IGF) binding proteins:the role of serum IGFBPs in regulating IGF availability. Acta Paed Scand(Suppl) 1991;372:107-114
  36. Lammens J, Liu Z, Aerssens J, Dequeker J, Fabry G:Distraction bone healing versus osteotomy healing: A comparative biochemical analysis. J Bone Miner Res 1998;13:279-286 https://doi.org/10.1359/jbmr.1998.13.2.279
  37. Liu Z, Luyten FP, Lammens J, Dequeker J: Molecular signaling in bone fracture healing and distraction osteogenesis. Histol Histopathol 1999;14:587-595
  38. Schumacher B, Albrechtsen J, Keller J, Flyvbjerg A, Hvid I: Periosteal insulin-like growth factor I and bone formation. Changes during tibial lengthening in rabbits. Acta Orthop Scand 1996;67:237-241 https://doi.org/10.3109/17453679608994679
  39. Tavakoli K, Yu Y, Shahidi S, Bonar F, Walsh WR, Poole MD: Expression of growth factor in the mandiblar distraction zone: a sheep study. Br J Plast Surg 1999;52:434-439 https://doi.org/10.1054/bjps.1999.3157
  40. Stewart KJ, Weyand B, Van't Hof RJ, White SA, Lvoff GO, Maffulli N et al ; A quantitative analysis of the effect of insulin-like growth factor-1 infusion during mandibular distraction osteogenesis in rabbits. Br J Plast Surg 1999;52:343-350
  41. Bail HJ, Kolbeck S, Lindner T, Dahne M, Weiler A, Windhagen HJ et al: The effect of growth hormone on insulin-like growth factor I and Bone metabolism in distraction osteogenesis. Growth Horm & IGF Res, 2001;11(5):314-323 https://doi.org/10.1054/ghir.2001.0246
  42. Kimoto T, Hosokawa, R, Kubo T, Maeda M, Sano A, Akagawa Y: Continuous administration of basic fibroblast growth factor(FGF-2) accelerates bone induction on rat calvaria an application of a new drug delivery system. J Dent Res 1998;77:1965-1969 https://doi.org/10.1177/00220345980770120301
  43. McCarthy TL, Centrella M, Canalis E: Effects of fibroblast growth factors on deoxyribonucleic acid and collagen synthesis in rat parietal bone cells. Endocrinology 1989;125:2118-2126 https://doi.org/10.1210/endo-125-4-2118