Soybean Wastewater Treatment by Activated Sludge Process

고농도 대두가공폐수의 처리를 위한 개선 활성슬러지법

  • Cho, Kwon-Ik (Department of Food Science and Technology, Woosuk University) ;
  • Lee, Jeoung-Su (Department of Civil Enginneering, Woosuk University) ;
  • Lee, Tae-Kyoo (Department of Food Science and Technology, Woosuk University) ;
  • Kim, Jong-Hwa (Department of Food Science and Technology, Woosuk University)
  • Published : 2002.02.28

Abstract

The kernel of wastewater treatment by activated sludge is elimination of organic substances and maintenance of well-flocculated sludge sedimentation. By the conventional activated sludge treatment, the optimum F/M ratio of soybean wastewater treatment was 0.24 (kg-BOD/kg-MLVSS day) and sludge bulking was generated at 0.48 (kg-BOD/kg-MLVSS day). To improve the treatment capacity and operation quality in higher loading of soybean wastewater, influent pH was constantly controlled by 9.0 using NaOH as a coagulant agent. In this process, higher loading up to 2.88 (kg-BOD/kg-MLVSS day) was possible and SVI was maintained under 150 without bulking. This was equivalent to 7.2 times higher than maximum permissible load of the conventional activated sludge process.

활성슬러지에 의한 생물학적 폐수처리에 있어 주된 관리인자는 유기물의 효율적인 제거와 슬러지의 침강성을 일정치 이하로 유지하는 것이다. 식품폐수의 하나인 고농도의 대두가공폐수를 일반적인 활성슬러지법을 적용한 결과 최적 F/M비(food-to-microorganism ratio)는 0.24(kg-BOD/kg-MLVSS day)였으며 그 이상의 농도인 0.48(kg-BOD/kg-MLVSS day)에서는 슬러지 팽화현상이 발생하여 고농도의 식품폐수처리에는 효율적이지 못하였다. 이를 개선하기 위하여 응집보조제(NaOH)를 활용하여 유입폐수의 pH를 9.0으로 조절한 결과, 2.88(kg-BOD/kg-MLVSS day)의 고농도 폐수를 유입하여도 슬러지의 팽화현상없이 SVI(sludge volume index)를 150 이하로 유지하였다. 이것은 최대 허용부하를 일반적인 활성슬러지법에 비하여 7.2배 높일 수 있는 효율적인 방법으로 평가되었다.

Keywords

References

  1. Gray, N. F. (1990) In Activated Studge. Oxford University Press, London
  2. Chudoba, J., Grau, R, Ottova, V. and Madera, V. (1973) Control of activated sludge filamentous bulking: Part I. EBect of the hydraulic regime or degree of mixing in an aeration tank. Water Research 7, 1163-1182 https://doi.org/10.1016/0043-1354(73)90070-5
  3. Chudoba, J., Grau, P. and Ottova, V. (1973) Control of activated sludge filamentous bulking: Part II, Selection of microorgan-isms by means of a selector. Water Research 7, 1389-1406 https://doi.org/10.1016/0043-1354(73)90113-9
  4. Clauss, R, Helaine, D., Balavoine, C. and Bidault, A. (1998) Improving activated sludge floe structure and aggregation for enhances settling and thickening performances,러'ater Sci. Tech-not. 38, 35-44
  5. Lee, J. S. and Kim, J. K. (1998) A study on the treatment Char-acteristics of the conventional activated sludge according to change of pH and SOD loading. J. Korean Soc. Env. Ene. 11, 1639-1650
  6. Helrich, K. (1990) In Official Methods of Anatysis (16th ed.) Association of Official Analydcal Chemists, Washington, D.C.,USA
  7. Lee, J. S. (1998) A comparative study on the treatment Charac-teristics of conventional and intermittent aeration activated sludge process. J. Korean Soc. Env. Ene. 20, 1267-1278
  8. Lee, J. S. (2000) The optimal design of suspended growth systems. J. Korean Soc. Env. Eng. 22, 1011-1019
  9. Danie1, L. (1998) In Micmbiotogy WCB/McGraw-Hill, New York, USA
  10. Sawyer, C. N., and McCarty, P. L. (1978) In Chemistry for Environmentl Engineering (3rd ed.) McGraw-Hill, New York, USA
  11. Vallon, J. K. and McLoughlin, A. J. (1984) Lysis as a factor in sludge Qocculation. Water Res. 18, 1523-1528 https://doi.org/10.1016/0043-1354(84)90127-1
  12. Norberg, A. B. and Enfors S. 0. (1982) Producdon of eXtraCel-lular polysacchahde by Zooglea ramisera. Avvt. Envir. Micm-biat. 44, 1231-1237
  13. Mithchell, R. (1974) In Introduction to environmentat micmbi-otoey Prentice-Hall, Englewood Cliffs, New Jersey, USA
  14. Friedman, B. A., Dugan, P. R., Pfister, R. A. and Remson, C. C. (1969) Structure of exocellular polymers and their relation-ship to bacterial flocculation. J. Bacteriot. 98, 1328-1334
  15. Monsen, R. M. and Davis, E. M. (1984) In Toxicity ScreeningProcedures Using Bacterial Systems: Microbial responses to setected orsanic chemicals in industrial waste treatment units,Marcel Dekker, New York, USA. pp. 233-249
  16. Atlas, R. M. and Bartha, R. (1997) In Microbiat Ecology: Fun-damental and aplicaion Bejamin/Cummings Science Publish-ing, Menlo park, Califomia, USA. pp. 61-65
  17. Bitton, G. (1994) In Wastewater Microbiology. John Wiley & Sons, New York, USA
  18. Stewant, M. H. and Olson, B. H. (1992) Physiological studies of chloramine resistance developed by Klebsiella pneumonae under low-nutrient growth conditions. Appt. Environ. Microbiol.58, 2918-2927
  19. Matin, A. and Haraken, S. (1990) In Drinking Water Microbi-ology: Effect of starvation on bacterial resistance to disinfec-tants, Springer-Verlag, New York, USA. pp. 88-103
  20. Granville, H. S. (1974) In Introduction to environmentat micro-bioIogy Prentice-Hall, Englewood Cliffs, New Jersey, USA
  21. Forster, C. P. and Johnston, D. W. M. (1987) In Environnwntal Biotechnology: Aerobic processes, Ellis Horwood, Chichester, UK. pp. 15-56
  22. Ameiican Society of Civil Engineers (1998) In Design of Municipl Wastewater Treatment PIants Vol. 2 Water Environ-mental Federation, Alexandria