Dry Enteric Coating Process of Lactic Acid Bacteria by Hybridization System

Hybridization system을 이용한 유산균의 장용성 건식 피복

  • Published : 2002.10.01

Abstract

Surface-modified powders were produced by hybridization system using core freeze-dried lactic acid bacteria (Lactobacillus acidophilus ATCC 43121) and enteric coating materials. Scanning electron microscopy showed that the surface of freeze-dried lactic acid bacteria changed to smooth round shape during surface reforming process, although no significant physical damages affecting the activity of the lactic acid bacteria were observed based on viability and salt-tolerance tests. Signigicant difference was not found in acid tolerance test probably due to the inherent acid tolerance of L. acidophilus ATCC 43121. Significantly improved heat tolerance was obtained by surface modification process. Among the tested coating materials, Sureteric showed a higher surface- reforming ability than Eudragit S100 and L100-55. Core : coating ratio agent of 9 : 1 (w/w) with rotor speed of 15,000 rpm for 3 min were determined to be optimum conditions for the process.

유산균의 활용성을 증진시키기 위한 방안으로서 건식 Hybridization system을 이용하여 장용성 피복재로 유산균분말의 표면처리를 실시하였다. 전자현미경 관찰 결과 표면처리는 유산균의 표면을 매끄러운 구형의 모양으로 변화시켰으며 표면처리를 통한 분체복합화 과정에서 유산균의 활력은 유의적인 변화없이 유지되었다. 또한 유산균의 내염성은 처리여부에 따른 유의적 변화를 보이지 않음으로써 표면처리 과정 중 유산균 세포막의 물리적 손상은 일어나지 않은 것으로 판단된다. 표면처리된 유산균의 내산성은 처리전후에 차이를 나타내지 않았으나 이는 균주 자체의 높은 내산성에 기인한 것으로 판단된다. 표면처리 후의 유산균은 유의적으로 높은 열저항성을 보여 표면처리가 유산균의 내열성 향상을 위하여 활용될 수 있는 가능성을 나타냈다. 조사된 장용성 피복재 중 Sureteric은 다른 피복재에 비하여 우수한 표면 처리 효과를 보였으며 유산균분말의 표면처리를 위한 적합한 처리조건은 유산균의 초기입도가 $100{\sim}200\;{\mu}m$, 유산균:피복재의 혼합비율(w/w)은 9 : 1, 처리속도는 15,000 rpm, 3분이었다.

Keywords

References

  1. Fuller, R. Probiotics 2, Applications and Practical Aspects. pp. 10-161, Chapman & Hall Press Inc., London, UK (1997)
  2. Maffai, H.V.L. and Brega, F.J.N. Gastric pH and microflora of normal and diarrhaeic infant. Gut. 16: 719-726 (1975) https://doi.org/10.1136/gut.16.9.719
  3. Conway, P.L., Blomberg, L., Welin, A. and Cohen, P.S. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70: 1-12 (1987) https://doi.org/10.3168/jds.S0022-0302(87)79974-3
  4. O'Riordan, K., Andrews, D., Buckle, K. and Conway, P. Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. J. Appl. Microbiol. 91: 1059-1066 (2001) https://doi.org/10.1046/j.1365-2672.2001.01472.x
  5. Bakan, J.A. Microencapsulation of foods and related products. Food Technol. 27: 34-39 (1973)
  6. Fanger, G.O. Microencapsulation: A brief history and introducdon, p. 1. In: Microencapsulation Processes and Applications, Vndergaer, J.E.(ed.). Plenum Press, New York, USA (1974)
  7. Ono, K. Powder milling and composition technology, (1st) Powder process technology seminar. Korean Institute of Chemical Engineers (KIChE), Daejon (1994)
  8. Nystrom, C. and Westerberg, M. The use of ordered mixtures for improving the dissolution rate of low solubility compounds. J. Pharm. Pharmacol. 38: 161-165 (1986) https://doi.org/10.1111/j.2042-7158.1986.tb04537.x
  9. McGinity, J.W., Ku, C., Bodmeier, R. and Harris, M.R. Dissolution and uniformity properties of ordered mixes of micronized griseofulvin and directly compressible excipient. Drug. Dev. Ind. Pharm. 11: 891-898 (1985) https://doi.org/10.3109/03639048509057463
  10. Staniforth, J.N., Rees, J.E., Lai, F.K. and Hersey, J.A. Interparticle forces in binary and ternary ordered powder mixes. J. Pharm. Pharmacol. 34: 141-145 (1982) https://doi.org/10.1111/j.2042-7158.1982.tb04210.x
  11. Takafumi, I., Honda, H., Kikuchi, Y., Ono, K., Katano, T. and Koishi, M. Preparation of drug-diluent hybrid powders by dry processing. J. Pharm. Pharmacol. 41: 361-368 (1989) https://doi.org/10.1111/j.2042-7158.1989.tb06478.x
  12. Takafumi, I., Honda, H. and Koishi, M. Drug dissolution from indomethacin-starch hybiid powders prepared by the dry impact blending method. J. Pharm. Pharmacol. 45: 770-774 (1993) https://doi.org/10.1111/j.2042-7158.1993.tb05682.x
  13. Thiel, W.J., Nguyen, L.T. and Sberna, F.J. Content uniformity of microdose tablets (dosage 1 microgram-10 mg) produced by fluid bed granulation of interactive mixtures. J. Pharm. Pharmacol. 38: 335-343 (1986) https://doi.org/10.1111/j.2042-7158.1986.tb04583.x
  14. Kobayashi, Y., Tohyama, K. and Terashima, T. Studies on biological characteristics of Lactobacillus: II. Tolerance of the multiple antibiotic resistance-strain, L. casei PSR3002, to artificial digestive fluids. Jpn. J. Microbiol. 29: 691-697 (1974)
  15. Gardiner, G.E., O'sullivan, E., Kelly, J., Auty, M.A.E., Fitzgerald, G.F., Collins, J.K., Ross, R.P. and Stanton, C. Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl. Environ. Microbiol. 66: 2605-2612 (2000) https://doi.org/10.1128/AEM.66.6.2605-2612.2000
  16. Lee. K.W. Studies on the microencapsulation of lactic acid bacteria and their survival. Ph.D. dissertation, Seoul National Univ., Seoul (1998)
  17. SAS Institute Inc. SAS/STAT Software. Changes and Enhancements. through Realease 6.11. Cary, NC, USA (1996)
  18. Chai, C.H. Studies on probiotics strains with cholesterol lowering effect and mechanism of cholesterol assimilation by Lactobacillus acidophilus ATCC 43121. M.S. thesis, Korea Univ., Seoul (2000)