Synthesis of 6,7-Dichloro-5,8-phthalazinedione and Its Derivatives

Jin Sung Kim, Kye Jung Shin, Dong Chan Kim, Yong Koo Kang, Dong Jin Kim, Kyung Ho Yoo, ${ }^{*}$ and Sang Woo Park*

Medicinal Chemistry Research Center, Korea Instinte of Science and Technologv, P.O. Box 131, Cheongrvang, Seoml 130-650, Korea

Received Juhy 24, 2002
An efficient procedure for the synthesis of 6,7 -dichloro- 5,8 -phthalazinedione (4) was developed in 49% overall yield via chloroxidation of 5,8 -diaminophthalazine (8). And a series of its derivatives, 7-pyridinium-5,8-phthalazinedione-6-oxide (9). 6-chloro-7-phenylamino-5,8-phthalazinedione (10), 6,6-dimethosy-6/1-2,3,6b,11-tetraazabenzolaffluoren-5-one (11a). and 6,6-diethosy-6H-2,3,6b, l1-tetraazabenzolaffuoren-5-one (11b) have been synthesized.

Key Words: Phthalazine, Ftlicient synthetic route, Chloroxidation, 6, 7-Dichloro-5,8-phthalazinedione

Introduction

The quinone compounds show various biological activities ${ }^{1}$ and some of the heterocyclic quinones are especially known to have an anticancer activity. ${ }^{2}$ In a previous paper, ${ }^{3}$ we described the synthesis and cytotoxicity of 2-methy l-4.9dily dro-1-substituted-1//-imidazo $4.5-g]$ quinoxaline- 4.9 -diones (1) and 2.3 -disubstituted-5.10-pyrazino $2.3-g] q u i n o x a-$ linediones (2), respectively. which showed excellent biological activity against human gastric adenocarcinoma cells

1

3

2

(MKN +5). The compounds $\mathbf{1}$ and 2 were obtained from 6.7-dichloro-5.8-quinoxalinedione (3) by an improved synthetic method. ${ }^{3}$

During the course of our program directed towards the development of novel DNA intercalators based on nitrogencontaining heterocyclic quinones. we envisaged that 6.7-dichloro-5.8-phthalazinedione could be an useful intermediate for the preparation of phthalazinedione derivatives which would be a novel DNA intercalator. Although the method has been described for the preparation of compound 4 in the literature. ${ }^{4}$ its overall yield was very low (total yield: 10%). We describe here an efficient procedure for the syntheses of 6.7 -dichloro- 5.8 -phthalazinedione (4) and its derivatives $9,10,11 \mathrm{a}$ and 11 b from 4 .

Results and Discussion

The synthesis of 6.7-dichloro-5.8-phthalazinedione (4) is depicted in Scheme 1. Nitrophthalazine (6) was obtained by treatment of phthalazine (5) with KNO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{1}{ }^{-1}$ Introduction of the amino group was realized by exposure to HONH_{2} in a mixture of EtOH and MeOH in the presence of KOH at

*omesponding Authors. Dr. Kyung Ho Yoo (Phone: +82-2-958-5152: Fax: +82-2-958-5189: c-mail: Whyoo?kist.re.kr)

4

9

10

11a,b
a; $R=M e ; b ; R=E t$

A

B

Scheme 2
$50-55^{\circ} \mathrm{C}$ to give 4 -nitro-7-aminophthalazine (7) in 66% yield. ${ }^{5}$ In the presence of FeCl_{3} catalyst. reduction of 7 with hydrazine hỵdrate gave diaminophthalazine 8 in quantitative yield. Subsequently chloroxidation with NaClO_{3} in concentrated hydrochloric acid led to 6.7 -dichloro-5.8-phthalazinedione (4) in 94% yield. ${ }^{\text {irs }}$ Under these conditions, the key intermediate + could be prepared in improved yield compared to the previous process (total yield: 49%).
Having the key intermediate 4 in hand, we carried out the reactions of 4 with the appropriate mucleophiles in alcoholic solvents or $\mathrm{CH}_{3} \mathrm{CN}$ (Scheme 2). The 6.7-dichloro-5.8phthalazinedione + was treated with pyridine in EtOH at 60

Figure 1. The ORTEP drawing of the molecular structure of 11 b .
${ }^{\circ} \mathrm{C}$ to furnish zwitterionic compound 9 in 83% yield. ${ }^{\prime}$ Treatment of + with aniline in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of $\mathrm{CeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ gave compound $10 .{ }^{6}$ Interestingly, when 4 was treated with 2-aminopy ridine in alcoholic solvents (MeOH , EtOH) at $60^{\circ} \mathrm{C}$, we obtained the tetracyclic compounds 11 a and 11b. ${ }^{\text {T- }^{-}}$The structure of tetracy clic compound 11b was unambiguously determined by X-ray crystallographic analysis (Figure 1).

The mechanism might be postulated as follows: the chlorine atom in the initial cyclized product \mathbf{A} is replaced by an alkosy group to give the intermediate \mathbf{B}. And then attack of one more alkoxy group is followed to provide the products 11 a and 11 b .
ln conclusion, we developed an efficient procedure for the synthesis of 6.7-dichloro-5.8-phthalazinedione (4). and prepared four of its derivatives $9,10.11 \mathrm{a}$ and 11 b by the treatment of 4 with pyridine. aniline and 2-anumopyridine in alcoholic solvents or $\mathrm{CH}_{3} \mathrm{CN}$. respectively. The illustrated method for the preparation of 4 and its reaction with nucleophiles may serve as a important tool for the synthesis of phthalazine derivatives.

Experimental Section

Melting points were determined on Thomas-Hoover capillary apparatus and were uncorrected. IR spectra were measured with a Perkin-Elmer 1710 spectrophotometer. ${ }^{~} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 300 . Mass spectra were obtained on Jeol SX-102. Elemental analyses were performed with FISONS instruments EA 1108 elemental analyzer. The X-Ray diffraction was measured on an Enraf Nonius $\mathrm{CAD}+$ diffractometer.

5-Nitrophthadazine (6). Potassium nitrate (73.2 g. 0.72 mol) was added in small portions to a solution of phthalazine $(20.0 \mathrm{~g}, 0.15 \mathrm{~mol})$ in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(150 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the addition was completed the mixture was heated at 55-60 ${ }^{\circ} \mathrm{C}$ for 2 days. and then diluted with water at $0^{\circ} \mathrm{C}$. The misture was neutralized with sodium hydroxide solution. The precipitate was filtered. and washed with water. The filtrate was extracted with EtOAc, and the extract was washed with brine. dried over MgSO_{4} and concentrated to dryness. The residue was washed with cold MeOH and combined with the precipitate obtained above. The small amount of water in the product was removed by evaporation with toluene to afford $6(21.3 \mathrm{~g} .79 \%)$ as a pale yellow solid: mp 186-189 ${ }^{\circ} \mathrm{C}$ (from EtOH) (lit. ${ }^{+}, 188-189^{\circ} \mathrm{C}$).
5-Nitro-8-amino-phthalazine (7). A solution of HONH_{2}. $\mathrm{HCl}(62.0 \mathrm{~g} .0 .89 \mathrm{~mol})$ in MeOH (1 L) was added to a solution of $6(26.0 \mathrm{~g} .0 .15 \mathrm{~mol})$ in $\mathrm{EtOH}(1.5 \mathrm{~L})$ slowly with stirring over a period of 3 h at $50-55^{\circ} \mathrm{C}$. The reaction misture was quenched by addition of ice water. The precipitate was filtered, and washed with water. The solvents of filtrate were evaporated off and the residue was taken up in EtOAc and water, which was extracted with EtOAc. The extract was washed with brine, dried over MgSO_{1} and concentrated to dryness. The residue was combined with the precipitate obtained above. and which was washed with cold MeOH to give $7(18.7 \mathrm{~g}, 66 \%)$ as a pale yellow solid: mp $>300{ }^{\circ} \mathrm{C}$ (from EtOH). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{DMSO}-t_{6}$): δ $10.29(\mathrm{~s} . \mathrm{lH}) .9 .76(\mathrm{~s}, 1 \mathrm{H}) .8 .50(\mathrm{~d} . J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) .8 .23(\mathrm{~s}$. $2 \mathrm{H}) .6 .97(\mathrm{~d} . j=9.2 \mathrm{~Hz} . \mathrm{lH}) .{ }^{1.3} \mathrm{C}$ NMR (75 MHz DMSOd6): $\delta 154.0,146.8$. 146.4. 134.7. 129.4. 122.0. 113.5. 112.4. IR (KBr): $3346,3136,1682,1610,157+$. 1504. $13+2 \mathrm{~cm}^{-1}$. HR-FABMS Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\mathrm{M}^{1}+\mathrm{H}\right)$: 191.0569. Found: 191.0573. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{1} \mathrm{O}_{2}:$ C. 50.53 ; H. 3.18: N. 29.46. Found: C. 50.74 ; H. 3.25 ; N. 28.61.

5,8-Diaminophthalazine (8). To a solution of 7 ($1+.2 \mathrm{~g}$. 74.7 mmol) in $\mathrm{MeOH}\left(700 \mathrm{ml}\right.$) was added $\mathrm{FeCl}_{3}(70.0 \mathrm{mg}$. 0.43 mmol) and charcoal (4.50 g), and the mixture was refluxed for 5 h . The product was filtered through celite. Evaporation of the solvent gave $8(11.9 \mathrm{~g}, 99 \%)$ as a pale yellow solid: mp $249-250^{\circ} \mathrm{C}$ (from EtOH). ${ }^{1} \mathrm{H}$ NMR (300
 ${ }^{1 .} \mathrm{C}$ NMR (75 MHz . DMSO- $\%$): δ 147.5. 135.8. 118.3 . 115.3. IR (KBr): $3312,3170.1556,1+72,1372 \mathrm{~cm}^{-1}$. FABMS $m z 161\left(\mathrm{M}^{\prime}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}: \mathrm{C}, 59.99$: H. 5.03 ; N. 34.98. Found: C. 59.86 : H. $5.0+$, N. $3+31$.

6,7-Dichlorophthalazine-5,8-dione (4). To a solution of 8 $(7.09 \mathrm{~g} .+4.3 \mathrm{mmol})$ in conc. $\mathrm{HCl}(90.0 \mathrm{~mL})$ was added NaClO_{3} ($6.08 \mathrm{~g} .+9.6 \mathrm{mmol}$) in many portions at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at rt . quenched by addition of water and the precipitate was filtered. The filtrate was neutralized with saturated NaHCO_{3} solution. and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and brine. dried over MgSO_{4} and concentrated to dry ness. The residue was combined with the precipitate obtained above to give $4(9.56 \mathrm{~g} .94 \%)$ as a pale yellow solid: mp 223$225^{\circ} \mathrm{C}$ (from EtOH) (lit. $.^{+} .223-225^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$. CDCl_{3}) : $\delta 9.93$ (s. 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{DMSO}-l_{6}$): δ
176.5, 147.1, 143.0. 125.5; IR (KBr): 1694. 1588, $1552 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}:$ C. 41.96: H. 0.88: N, 12.23. Found: C. +2.14 , H. 1.00: N, 11.88 .

7-Pyridinium-5,8-phthalazinedione-6-oxide (9). A suspension of 4 (200 mg .0 .88 mmol) in EtOH (40.0 mL) was heated until the starting material was dissolved. To this solution was added pyridine (0.30 mL .3 .96 mmol). and the reaction mixture was stirred for 3 h at $60^{\circ} \mathrm{C}$. After reaction was completed the mixture was cooled. The precipitate was collected by filtration to yield 9 ($185 \mathrm{mg} .83 \%$) as a deep purple solid: $m p>300^{\circ} \mathrm{C}$ (from EtOH). ${ }^{1} \mathrm{H} N \mathrm{NR}(300 \mathrm{MHz}$. DMSO- d_{6}): $\delta 9.79(\mathrm{~d}, j=1.1 \mathrm{~Hz}, 1 \mathrm{H}) .9 .57(\mathrm{~d}, j=1.1 \mathrm{~Hz}$. 1H). $8.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .8 .64(\mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{H}) .8 .21$ $(\mathrm{t} . J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{1,3} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$. DMSO- $\left.d_{6}\right): \delta 184.4$. 170.3. 165.4. 148.6. 148.3, 146.2, 145.8. 128.3. 127.7. 126.8. 125.4: IR (KBr): 1704. 1590. 1552, $1470 \mathrm{~cm}^{-1}$. HRFABMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{-}-\mathrm{N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}): 254.0566$. Found: 254.0566. Anal. Calcd for $\mathrm{C}_{1} ; \mathrm{H}=\mathrm{N}_{3} \mathrm{O}_{3}$: C. 61.66; H. 2.79; N. 16.59. Found: C. 61.52; H. 2.70: N, 16.36.

6-Chloro-7-phenylamino-5,8-phthalazinedione (10). To a solution of 4 in $\mathrm{CH}_{3} \mathrm{CN}$ was added cerium (III) chloride hexahydrate, and the reaction mixture was stirred for 10 min at rt . Aniline was added to the reaction mixture at same temperature. The reaction mixture was stirred for overnight at ft , the solvent was evaporated off. The residue was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried over MgSO_{i} concentrated to dryness. The collected crude product was washed with hexane to give 10 as a purple solid: mp 226-227 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta 9.93(\mathrm{~d}, j=1.1 \mathrm{~Hz}$. 1H). 9.78 (d, $J=1.1 \mathrm{~Hz} .1 \mathrm{H}) .7 .73$ (bs, 1 H$) .7 .40(\mathrm{t}, J=7.6$ $\mathrm{Hz} .2 \mathrm{H}) .7 .31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 180.3 .175 .6 .147 .1 .145 .3$. 141.4, 136.4, 128.7, 126.9, 124.9, 124.5, 122.9. 115.0: IR (KBr): 3294, 1682, 164. 1590. 1556, 1504. $1450 \mathrm{~cm}^{-1}$. FABMS $m z 286(\mathrm{M}+\mathrm{H}) .288(\mathrm{M}+2)$. HR-FABMS Calcd for $\mathrm{C}_{1.1} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{ClN}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}): 286.0383$. Found: 286.0407 . Anal. Caled for $\mathrm{C}_{1,1} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{ClN}_{3} \mathrm{O}_{2}$: C. 58.86 : H. 2.82: N . 14.71. Found: C. 58.35 ; H. 2.82: N. 14.54.

6,6-Dimethoxy-6H-2,3,6b,11-tetraazabenzo|a|fluoren5 -one (11a). A suspension of $4(150 \mathrm{mg} .0 .66 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL}$) was heated until the starting material was dissolved. To this solution was added 2-aminopyridine (15t mg . $1.6+\mathrm{mmol}$). After being stirred for 6 h at $60^{\circ} \mathrm{C}$. the reaction mixture was cooled. The solvent was removed by evaporation, and the residue was extracted with water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was washed with brine. dried over MgSO_{+}concentrated to dryness. The residue was purified by column chromatography (EtOAc) to give 11a ($103 \mathrm{mg} .53 \%$) as a pale yellow solid: mp $200-205^{\circ} \mathrm{C}$ (decomp) (from MeOH). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{i}$): δ 10.03 (d. $J=1.2 \mathrm{~Hz} .1 \mathrm{H}) .9 .50(\mathrm{~d} . J=1.2 \mathrm{~Hz}, ~ \mathrm{IH}) .8 .52$ (dt. $J=6.8 .1 .1 \mathrm{~Hz}, 1 \mathrm{H}) .7 .76$ (dt. $J=9.1 .1 .1 \mathrm{~Hz}, 1 \mathrm{H}) .7 .+1$ (ddd. $J=9.1 .6 .8 .1 .1 \mathrm{~Hz} .1 \mathrm{H}), 7.00(\mathrm{td} . J=6.8 .1 .1 \mathrm{~Hz}, 1 \mathrm{H})$. 3.42 (s. 6 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{\mathrm{i}}$): $\delta 193.1 .1+8.6$. $147.3,146.8,137.1 .129 .6,128.0,126.8$. 122.7. 121.6. 119.1, 115.0. 95.7. 52.6. IR (KBr): 1716, 1594. $1572 \mathrm{~cm}^{-1}$.

FABMS $m z 297\left(M^{\prime}+\mathrm{H}\right)$: Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{1} \mathrm{O}_{3}: \mathrm{C}$, 60.81 : H. 4.08 : N, 18.91 . Found: C. 60.66 : H. 4.02 ; N, 18.70.

6,6-Diethoxy-6H-2,3,6b,11-tetraazabenzo[a]fluoren-5one (11b). According to the procedure described for the preparation of the 11a from 4 . the title compound 11b (137 $\mathrm{mg} .48 \%$) was obtained from the reaction of $4(200 \mathrm{mg} .0 .87$ mmol) in ethanol as a pale yellow solid: mp $174-175^{\circ} \mathrm{C}$ (from EtOH$) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.0+(\mathrm{d} . ~ j=$ $1.2 \mathrm{~Hz} .1 \mathrm{H}) .9 .52(\mathrm{~d}, J=1.2 \mathrm{~Hz} . \mathrm{lH}) .8 .58(\mathrm{dt}, J=6.8 .1 .1$ Hz .1 H). 7.77 (dt. $J=9.2 .1 .1 \mathrm{~Hz} .1 \mathrm{H}) .7 .42$ (ddd. $J=9.2$, $6.8 .1 .1 \mathrm{~Hz}, 1 \mathrm{H}) .7 .01(\mathrm{td} . j=6.8 .1 .1 \mathrm{~Hz}, 1 \mathrm{H}) .3 .71(\mathrm{qd}, J=$ $7.0 .2 .1 \mathrm{~Hz} .2 \mathrm{H}) .3 .58(\mathrm{qd}, J=7.0 .2 .1 \mathrm{~Hz} .2 \mathrm{H}) .1 .22(\mathrm{t} . J=$ $7.0 \mathrm{~Hz}, 6 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.8 .148 .5$. 147.4. 146.9. 136.6. 129.7, 127.9. 126.6. 122.7, 122.6. 119.1. 114.8, 95.2, 60.8. 15.7. IR (KBr): 1718, 1588. 1568 cm^{-1}. HR-FABMS Calcd for $\mathrm{C}_{1}: \mathrm{H}_{16} \mathrm{~N}_{1} \mathrm{O}_{5}\left(\mathrm{M}^{1}+\mathrm{H}\right): 325.1301$. Found: 325.1302 . Anall Calcd for $\mathrm{C}_{1}-\mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 62.95 ; \mathrm{H}$. 4.97: N. 17.27. Found: C. 62.62: H. 4.82; N. 16.93.

Crystal struture determination of compound 11 b . Single crystals of 11b were obtained from EtOH. Crystal data: $\mathrm{C}_{1}: \mathrm{H}_{16} \mathrm{~N}_{1} \mathrm{O}_{3} . \mathrm{M}_{4}=324.34$. Wavelength $=0.71073 \mathrm{~A}$. triclinic. $\bar{I} \overline{\mathrm{I}}$ (No. 2) $. ~ Z=2, a=8.389$ (2) A. $b=9.232$ (2) A. $c=$
11.699 (2) A. $\alpha=68.10$ (2) deg. $\beta=72.69$ (2) deg. $\gamma=67.61$ (2) deg, $\mathrm{J}=764.4$ (3) $\mathrm{A}^{3}, d_{\text {celc }}=1.409 \mathrm{~g} / \mathrm{cm}^{3}, R \mathrm{l}=0.0501$, $u R 2=0.1369$ for 2007 unique reflections $(I>2 \sigma(I))$ and 217 variables.

Acknowledgment. We thank the Il Dong Phamm. Co. for its donation of Chair Fund to KIST, and wish also to thank Dr. Kwan Mook Kim for the X-ray structure determination.

References

1. Morton. R. A. Biochemistry of Quinones: Academic Press: New York. 1965.
2. Elimove G. A.: Efros. L. S. 7h. Org. Khm. 1967. 3. 162.
3. Yoo. II.-W.: Suh. M. F..: Park. S. W. J. Ifed. Chem. 1998. 4. 4716
4. Shaikh. I. A.: Johnson, F.: Grollman, A. P. J. Med. Chem. 1986. 29. 1329.
5. Ryu. C.-K.: Lee. I.-K.: Jung. S.-H.: Lee. C.-O. Bioorg. .hed Chem lett 1999. 9. 1075.
6. Ilan, G.: Shin, K. J.: Kim, D. C.: Yoo, K. II.: Kim, D. J.: Park, S. W. Heterocteles 1996. \$3. 2495.
7. Nllan. J. ^. V.: Rentiolds. G. A. Pohnucter Hetrerocteley 1963. 28. 1019.
