References
- Davidson, B. S. Chem. Rev. 1994, 93, 1771 https://doi.org/10.1021/cr00021a006
- Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1 https://doi.org/10.1039/b006897g
- Anderson, R. J.; Faulkner, D. J.; Cun-heng, H.; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1985, 107, 5492 https://doi.org/10.1021/ja00305a027
- Lindquist, N.; Fenical, W.; Van Duyne, G. D.; Clardy, D. J. Org. Chem. 1988, 53, 4570 https://doi.org/10.1021/jo00254a029
- Davis, R. A.; Carroll, A. R.; Pirens, G. K.; Quinn, R. J. J. Nat. Prod. 1999, 62, 419 https://doi.org/10.1021/np9803530
- Urban, S.; Butler, M. S.; Capon, R. J. Aust. J. Chem. 1994, 47, 1919 https://doi.org/10.1071/CH9941919
- Urban, S.; Hobbs, L.; Hopper, J. N. A.; Capon, R. J. Aust. J. Chem. 1995, 48, 1491 https://doi.org/10.1071/CH9951491
- Carroll, A. R.; Bowden, B. F.; Coll, J. C. Aust. J. Chem. 1993, 46, 489 https://doi.org/10.1071/CH9930489
- Urban, S.; Capon, R. J. Aust. J. Chem. 1996, 49, 711
- Reddy, M. V. R.; Faulkner, D. J.; Venkateswarlu, Y.; Rao, M. R. Tetrahedron 1997, 53, 3457 https://doi.org/10.1016/S0040-4020(97)00073-2
- Reddy, M. V. R.; Rao, M. R.; Rhodes, D.; Hansen, M. S. T.; Rubins, K.; Bushman, F. D.; Venkateswarlu, Y.; Faulkner, D. J. J. Med. Chem. 1999, 42, 1901 https://doi.org/10.1021/jm9806650
- Kang, H.; Fenical, W. J. Org. Chem. 1997, 62, 3254 https://doi.org/10.1021/jo962132+
- Quesada, A. R.; Gravalos, M. D. G.; Puentes, J. L. F. Br. J. Cancer 1996, 74, 677 https://doi.org/10.1038/bjc.1996.421
- Boger, D. L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54 https://doi.org/10.1021/ja982078+
- Piantini, U.; Sorensen, W.; Ernst, R. R. J. Am. Chem. Soc. 1982, 104, 6800 https://doi.org/10.1021/ja00388a062
- Doddrell, D. M.; Pegg, D. T.; Bendall, M. R. J. Magn. Reson. 1982, 48, 323
- Bax, A.; Drobny, G. J. Magn. Reson. 1985, 61, 306
- Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093 https://doi.org/10.1021/ja00268a061
- Mosmann, T. J. Immunol. Methods 1983, 65, 55 https://doi.org/10.1016/0022-1759(83)90303-4
- Jackman, L. M.; Sternhill, S. Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry; Pergamon Press: Oxford, U. K., 1969; p 61
Cited by
- Bioactive Nitrogenous Metabolites from Ascidians vol.74, pp.1, 2007, https://doi.org/10.3987/REV-07-SR(W)2
- Anticancer Alkaloid Lamellarins Inhibit Protein Kinases vol.6, pp.4, 2008, https://doi.org/10.3390/md20080026
- ChemInform Abstract: A Novel Cytotoxic Alkaloid of Lamellarin Class from a Marine Ascidian Didemnum sp. vol.33, pp.28, 2010, https://doi.org/10.1002/chin.200228265
- Trifluoroacetic acid-promoted Michael addition–cyclization reactions of vinylogous carbamates vol.12, pp.21, 2014, https://doi.org/10.1039/C4OB00437J
- Modular Synthesis of Lamellarins via Regioselective Assembly of 3,4,5-Differentially Arylated Pyrrole-2-carboxylates vol.79, pp.2, 2014, https://doi.org/10.1021/jo402181w
- Facile and Divergent Synthesis of Lamellarins and Lactam-Containing Derivatives with Improved Drug Likeness and Biological Activities vol.10, pp.12, 2015, https://doi.org/10.1002/asia.201500611
- Designing New Analogs for Streamlining the Structure of Cytotoxic Lamellarin Natural Products vol.10, pp.4, 2015, https://doi.org/10.1002/asia.201403361
- Synthetic Approaches to the Lamellarins—A Comprehensive Review vol.12, pp.12, 2014, https://doi.org/10.3390/md12126142
- Cytotoxicities and Structure-Activity Relationships of Natural and Unnatural Lamellarins toward Cancer Cell Lines vol.4, pp.3, 2009, https://doi.org/10.1002/cmdc.200800339
- Further developments in the synthesis of lamellarin alkaloids via direct metal–halogen exchange vol.44, pp.7, 2002, https://doi.org/10.1016/s0040-4039(02)02887-3
- Antileukemic effects of Didemnum psammatodes (Tunicata: Ascidiacea) constituents vol.151, pp.3, 2002, https://doi.org/10.1016/j.cbpa.2007.02.011
- Design and Synthesis of Lamellarin D Analogues Targeting Topoisomerase I vol.74, pp.21, 2002, https://doi.org/10.1021/jo901589e
- Assessing the drug-likeness of lamellarins, a marine-derived natural product class with diverse oncological activities vol.45, pp.6, 2002, https://doi.org/10.1016/j.ejmech.2010.01.053
- A simple synthesis of the lamellarin analogues from 3-nitro-2-trifluoromethyl-2H-chromenes and 1-benzyl-3,4-dihydroisoquinolines vol.20, pp.6, 2002, https://doi.org/10.1016/j.mencom.2010.11.006
- Synthesis and Biological Activity of Lamellarin Alkaloids: An Overview vol.83, pp.3, 2002, https://doi.org/10.3987/rev-10-686
- Exploring the molecular basis for selective cytotoxicity of lamellarins against human hormone-dependent T47D and hormone-independent MDA-MB-231 breast cancer cells vol.142, pp.1, 2002, https://doi.org/10.1007/s00706-010-0409-y
- Rotational Energy Barrier around the C1-C11 Single Bond in Lamellarins: A Study by Variable-Temperature NMR vol.88, pp.2, 2002, https://doi.org/10.3987/com-13-s(s)69
- A Novel Bromoindole Alkaloid from a Korean Colonial Tunicate Didemnum sp. vol.21, pp.4, 2015, https://doi.org/10.20307/nps.2015.21.4.278
- A Synthesis of Lamellarins via Regioselective Assembly of 1,2,3-Differentially Substituted 5,6-Dihydropyrrolo[2,1-a]Isoquinoline Core vol.91, pp.4, 2015, https://doi.org/10.3987/com-15-13188
- Active methylenes in the synthesis of a pyrrole motif: an imperative structural unit of pharmaceuticals, natural products and optoelectronic materials vol.6, pp.43, 2002, https://doi.org/10.1039/c6ra03411j
- Synthesis of Lamellarin G Trimethyl Ether by von Miller–Plöchl‐Type Cyclocondensation vol.2018, pp.30, 2002, https://doi.org/10.1002/ejoc.201800611
- Secondary Metabolites of the Genus Didemnum : A Comprehensive Review of Chemical Diversity and Pharmacological Properties vol.18, pp.6, 2020, https://doi.org/10.3390/md18060307
- Recent Advances in the Synthesis of Pyrroles vol.24, pp.11, 2002, https://doi.org/10.2174/1385272824999200528125651
- Synthesis of lamellarin R, lukianol A, lamellarin O and their analogues vol.10, pp.70, 2002, https://doi.org/10.1039/d0ra09249e
- [3 + 2]-Annulation of pyridinium ylides with 1-chloro-2-nitrostyrenes unveils a tubulin polymerization inhibitor vol.19, pp.33, 2002, https://doi.org/10.1039/d1ob01141c
- Pyrrole‐Fused Benzoxazinones/Quinoxalinones: Molecular Dynamic Simulation, Antiproliferative and Antibacterial Activities vol.6, pp.40, 2002, https://doi.org/10.1002/slct.202103015