DOI QR코드

DOI QR Code

Photohysical Properties of New Psoralen Derivatives:Psoralens Linked to Adenine through Polymethylene Chains


Abstract

The model compounds, 8-methoxypsoralen-CH2O(CH2)n-adenine (MOPCH2OCnAd, n=2, 3, 5, 6, 8, and 10) in which 5 position of 8-methoxypsoralen (8-MOP) is linked by various lengths of polymethylene bridge to N9 of adenine. UV absorption spectra are identical with the sum of MOPCH2OC3 and adenine absorption spectra. Solvent effects on the UV absorption and fluorescence emission spectra indicate that the lowest excited singlet state is the $(\pi${\rightarrow}$\pi*)$ state. The spectral characteristics of the fluorescence of MOPCH2OCnAd are strongly dependent upon the nature of the solvents. The fluorescence emission spectra in aprotic solvents are broad and structureless due to the excimer formation through the folded conformation accelerated by hydrophobic ${\pi}-{\pi}$ stacking interaction. Increasing polarity of the protic solvents leads to higher population of unfolded conformation stabilized through favorable solvation and H-bonding, and consequently to an increase in the fluorescence intensity, fluorescence lifetime, and a shift of fluorescence maximum to longer wavelengths. The decay characteristics of the fluorescence in polar protic solvents shows two exponential decays with the lifetimes of 0.6-0.8 and 1.6-1.9 ns in 5% ethanol/water, while MOPCH2OC3 shows 0.5 and 1.7 ns fluorescence lifetimes. The long-lived component of fluorescence can be attributed to the relaxed species (i.e., the species for which the solvent reorientation (or relaxation) has occurred), while the short-lived components can be associated with the unrelaxed, or only partially relaxed, species.

Keywords

References

  1. Song, P.-S.; Tapley, K. J. Photochem. Photobiol. 1979, 29, 1177. https://doi.org/10.1111/j.1751-1097.1979.tb07838.x
  2. Shim, S. C.; Jeon, Y. H.; Kim, D. W.; Han G. S.; Yoo, D. J. J. Photosci. 1995, 2, 37.
  3. Shim, S. C. Organic Photochemistry and Photobiology. CRC Handbook; Horspool, W. M.; Song, P.-S., Eds.; CRC Press, Inc.: London, 1995; p 1347.
  4. Zarebska, Z.; Waszkowska, E.; Caffieri, S.; Dall'Acqua, F. Il Famaco 2000, 55, 515. https://doi.org/10.1016/S0014-827X(00)00076-8
  5. Scott, B. R.; Pathak, M. A.; Mohn, G. R. Mutat. Res. 1976, 39, 29. https://doi.org/10.1016/0165-1110(76)90012-9
  6. Parrish, J. A.; Stern, P. S.; Pathak, M. A.; Fitzpatrick, T. B. The Science of Photomedicine; Plenum Press: New York, 1982; pp 595-624.
  7. Parrish, J. A.; Fitzpatrick, T. B.; Tanenbaum, L.; Pathak, M. A. New Engl. J. Med. 1974, 1207.
  8. Edelson, R.; Berger, C.; Gasparro, F.; Jegasothy, B.; Heald, P.; Wintroub, B.; Vonderheid, E.; Knobler, R.; Wolff, K.; Plewig, G.; Mckiernan, G.; Christansen, I.; Oster, M.; Honigsmann, H.; Wilford, H.; Kokoschka, E.; Rehle, T.; Perez, M.; Stingl, G.; Laroche, L. New Engl. J. Med. 1987, 316, 297. https://doi.org/10.1056/NEJM198702053160603
  9. Knobler, R. M.; Honigsmann, H.; Edelson, R. L. Psoralen Phototherapies in Psoralen DNA Photobiology; Gasparro, F. T., Ed.; CRC Press: Boca Raton, Florida, 1988; Vol. II, pp 117-134.
  10. Gorin, J.; Lessana-Leibowitch, M.; Fortier, P.; Leibowitch, J.; Escande, J.-P. J. Am. Acad. Dermatol. 1989, 20, 511. https://doi.org/10.1016/S0190-9622(89)80095-7
  11. Cimino, G. P.; Gamper, H. B.; Isaacs, S. T.; Hearst, J. E. Annu. Rev. Biochem. 1985, 54, 1151. https://doi.org/10.1146/annurev.bi.54.070185.005443
  12. Hanson, C. V.; Shen, C.-K. J.; Hearst, J. E. Science 1976, 193, 62. https://doi.org/10.1126/science.935855
  13. Bordin, F.; Marzano, C.; Gatto, C.; Carassare, F.; Rodighiero, P.; Baccichetti, F. J. Photochem. Photobiol. B: Biol. 1994, 26, 197. https://doi.org/10.1016/1011-1344(94)07040-7
  14. Chen, X.; Kagan, J.; DallAcqua, F.; Averbeck, D.; Bisagni, E. J. Photochem. Photobiol. B: Biol. 1994, 22, 51. https://doi.org/10.1016/1011-1344(93)06953-Z
  15. Fujita, H.; Sano, M.; Suzuki, K. Photochem. Photobiol. 1979, 29, 71. https://doi.org/10.1111/j.1751-1097.1979.tb09263.x
  16. Musajo, L.; Bordin, F.; Caporale, G.; Marciani, S.; Rigatti, G. Photochem. Photobiol. 1967, 6, 711. https://doi.org/10.1111/j.1751-1097.1967.tb08736.x
  17. Rodighiero, G.; DallAcqua, F. Photochem. Photobiol. 1976, 24, 647. https://doi.org/10.1111/j.1751-1097.1976.tb06887.x
  18. Parsons, B. J. Photochem. Photobiol. 1980, 32, 813. https://doi.org/10.1111/j.1751-1097.1980.tb04061.x
  19. DallAcqua, F.; Terbojevich, M.; Marciani Magno, S.; Vedaldi, D.; Recher, M. Chem. Biol. Interact. 1978, 21, 103. https://doi.org/10.1016/0009-2797(78)90071-6
  20. Ronto, G.; Toth, K.; Gaspar, S.; Csik, G. J. Photochem. Photobiol., B; Biol. 1992, 12, 9. https://doi.org/10.1016/1011-1344(92)85015-M
  21. Hearst, J. E.; Isaacs, S. T.; Kanne, D.; Rapoport, H.; Straub, K. Q. Rev. Biophys. 1984, 17, 1. https://doi.org/10.1017/S0033583500005242
  22. Decout, J. L.; Huart, G.; Lhomme, J. Photochem. Photobiol. 1988, 48, 583. https://doi.org/10.1111/j.1751-1097.1988.tb02868.x
  23. Decout, J. L.; Lhomme, J. Photochem. Photobiol. 1983, 37, 155. https://doi.org/10.1111/j.1751-1097.1983.tb04451.x
  24. Decout, J. L.; Lhomme, J. Tetrahedron Lett. 1981, 22, 1247. https://doi.org/10.1016/S0040-4039(01)90286-2
  25. Castellan, A.; Desvergne, J. P. Photochem. Photobiol. 1981, 34, 183. https://doi.org/10.1111/j.1751-1097.1981.tb09344.x
  26. Kang, H. K.; Shin, E. J.; Shim, S. C. J. Photochem. Photobiol. B: Biol. 1992, 13, 19. https://doi.org/10.1016/1011-1344(92)80036-U
  27. Yun, M. H.; Choi, S. J.; Shim, S. C. Photochem. Photobiol. 1993, 58, 164. https://doi.org/10.1111/j.1751-1097.1993.tb09543.x
  28. Yoo, D. J.; Hyun, S.-H.; Shim, S. C. Bull. Korean Chem. Soc. 2001, 22, 575.
  29. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals; Pergamon Press: New York, 1988.
  30. Aboulezz, A. F.; E1-Attar, A. A.; El-Sockary, M. A. Acta Chim. Acad. Sci. Hung. 1973, 77, 205.
  31. Lai, T.-T.; Lim, B. T.; Lim, E. C. J. Am. Chem. Soc. 1982, 104, 7631. https://doi.org/10.1021/ja00390a039

Cited by

  1. π-Expanded coumarins: synthesis, optical properties and applications vol.3, pp.7, 2015, https://doi.org/10.1039/C4TC02665A
  2. A theoretical insight into the photophysics of psoralen vol.124, pp.12, 2002, https://doi.org/10.1063/1.2178794
  3. The family of furocoumarins: Looking for the best photosensitizer for phototherapy vol.199, pp.1, 2002, https://doi.org/10.1016/j.jphotochem.2008.04.013
  4. Photoreactivity of Furocoumarins and DNA in PUVA Therapy: Formation of Psoralen−Thymine Adducts vol.112, pp.44, 2008, https://doi.org/10.1021/jp805523d