DOI QR코드

DOI QR Code

Exactly Solvable Time-Dependent Problems: Potentials of Monotonously Decreasing Function of Time


Abstract

Keywords

References

  1. Truscott, W. S. Phys. Rev. Lett. 1993, 70, 1900. https://doi.org/10.1103/PhysRevLett.70.1900
  2. Park, T. J. Bull. Korean Chem. Soc. 2002, 23, 357. https://doi.org/10.5012/bkcs.2002.23.2.357
  3. Vorobeichik, I.; Lefebvre, R.; Moiseyev, N. Europhys. Lett. 1998, 41, 111. https://doi.org/10.1209/epl/i1998-00117-6
  4. Wagner, M. Phys. Rev. Lett. 1996, 76, 4010. https://doi.org/10.1103/PhysRevLett.76.4010
  5. Wagner, M. Phys. Rev. B 1994, 49, 16544. https://doi.org/10.1103/PhysRevB.49.16544
  6. Phys. Rev. A v.63 Guedes, I
  7. Phys. Rev. A v.64 Feng, M
  8. Guedes, I. Phys. Rev. A 2001, 63, 034102. https://doi.org/10.1103/PhysRevA.63.034102
  9. Feng, M. Phys. Rev. A 2001, 64, 034101. https://doi.org/10.1103/PhysRevA.64.034101
  10. Lewis, Jr., H. R. J. Math. Phys. 1968, 9, 1976. https://doi.org/10.1063/1.1664532
  11. Lewis, Jr., H. R. Phys. Rev. Lett. 1967, 18, 510. https://doi.org/10.1103/PhysRevLett.18.510
  12. Yeon, K. H.; Kim, D. H.; Um, C. I.; George, T. F.; Pandey, L. N. Phys. Rev. A 1997, 55, 4023. https://doi.org/10.1103/PhysRevA.55.4023
  13. Yeon, K. H.; Kim, H. J.; Um, C. I.; George, T. F.; Pandey, L. N. Phys. Rev. A 1994, 50, 1035. https://doi.org/10.1103/PhysRevA.50.1035
  14. Ji, J.-Y.; Kim, J. K.; Kim, S. P. Phys. Rev. A 1995, 51, 4268. https://doi.org/10.1103/PhysRevA.51.4268
  15. Park, T. J. Bull. Korean Chem. Soc. 2002, 23, 355. https://doi.org/10.5012/bkcs.2002.23.2.355
  16. Feng, M.; Wang, K. Phys. Lett. A 1995, 197, 135. https://doi.org/10.1016/0375-9601(94)00857-L
  17. Wang, K.; Feng, M.; Wu, J. Phys. Rev. A 1995, 52, 1419. https://doi.org/10.1103/PhysRevA.52.1419
  18. Brown, L. S. Phys. Rev. Lett. 1991, 66, 527. https://doi.org/10.1103/PhysRevLett.66.527
  19. Dantas, C. M. A.; Pedrosa, I. A.; Baseia, B. Phys. Rev. A 1992, 45, 1320. https://doi.org/10.1103/PhysRevA.45.1320
  20. Yuen, H. P. Phys. Rev. A 1976, 13, 2226. https://doi.org/10.1103/PhysRevA.13.2226
  21. Carrier, G. F.; Pearson, C. E. Partial Differential Equations; Academic Press: New York, 1976; p 26.
  22. Ge, J.-Y.; Zhang, J. Z. H. J. Chem. Phys. 1996, 105, 8628 https://doi.org/10.1063/1.472644

Cited by

  1. On the Canonical Transformation of Time-Dependent Harmonic Oscillator vol.2010, pp.2090-2239, 2010, https://doi.org/10.1155/2010/103538
  2. On the Quantization of One-Dimensional Nonstationary Coulomb Potential System vol.81, pp.6, 2012, https://doi.org/10.1143/JPSJ.81.064003
  3. Transmission through a regular vs. a superoscillating barrier vol.5, pp.3, 2018, https://doi.org/10.1007/s40509-018-0154-1
  4. Rabi Oscillation between States of a Coupled Harmonic Oscillator vol.24, pp.2, 2003, https://doi.org/10.5012/bkcs.2003.24.2.219
  5. Canonical Transformations for Time-Dependent Harmonic Oscillators vol.25, pp.2, 2002, https://doi.org/10.5012/bkcs.2004.25.2.285
  6. Momentum Eigensolutions of Feinberg-Horodecki Equation with Time-Dependent Screened Kratzer-Hellmann Potential vol.8, pp.7, 2002, https://doi.org/10.4236/jamp.2020.87091
  7. Exact Quantized Momentum Eigenvalues and Eigenstates of a General Potential Model vol.8, pp.7, 2002, https://doi.org/10.4236/jamp.2020.87109
  8. Feinberg-Horodecki Exact Momentum States of Improved Deformed Exponential-Type Potential vol.8, pp.8, 2020, https://doi.org/10.4236/jamp.2020.88115
  9. Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg–Horodecki equation vol.29, pp.6, 2020, https://doi.org/10.1088/1674-1056/ab8379
  10. Bound-state solutions and thermal properties of the modified Tietz–Hua potential vol.11, pp.1, 2002, https://doi.org/10.1038/s41598-021-81428-9