References
- El-Sall, M. S.; Slack, W. Macromolecules 1995, 28, 8456. https://doi.org/10.1021/ma00128a074
- Golden, J. H.; Deng, H.; DiSalvo, F. J.; Frechet, J. M. J.;Thompson, P. M. Science 1995, 268, 1463. https://doi.org/10.1126/science.268.5216.1463
- Martin, C. R. Chem. Mater. 1996, 1739.
- Sohn, B. H.; Cohen, R. E. Acta polymer 1996, 47, 340. https://doi.org/10.1002/actp.1996.010470804
- Regar, T. S.; Janda, K. D. J. Am. Chem. Soc. 2000, 122, 6929. https://doi.org/10.1021/ja000692r
- Lin, Y. S.; Ji, W.; Wang, Y.; Higgins, R. J. Ind. Eng. Chem.Res. 1999, 38, 2292. https://doi.org/10.1021/ie980662l
- Terry, K. W.; Lugmair, C. G.; Gantzel, P.K.; Tilley, T. D. Chem. Mater. 1996, 8, 274. https://doi.org/10.1021/cm9503700
- Shim, I. W.; Oh, W. S.; Jeong, H. C.; Seok, W. K. Macromolecules1996, 29, 1099. https://doi.org/10.1021/ma951233r
- Shim, I. W.; Kim, J. Y.; Kim, D. Y.; Choi, S. Reactive andFunctional Polymers 2000, 43, 71. https://doi.org/10.1016/S1381-5148(99)00003-6
- Shim, I. W.; Choi, S.; Noh, W. T.; Kwon, J.; Cho, J. Y.; Chae, D.Y.; Kim, K. S. Bull. Korean Chem. Soc. 2001, 22, 772.
- Shim, I. W.; Kim, D. Y.; Choi, S.; Kong, K. H.; Choe, J. I. Reactiveand Functional Polymers 2000, 43, 287 https://doi.org/10.1016/S1381-5148(99)00055-3
- Pouchet, C. J. The Aldrich Library of FT-IR Vapor Phase, 1stEd.; Aldrich Chemical Company, Inc.: Milwaukee, Wisconsin, U.S. A., 1983; Volume 3.
-
Nyquist, R. A.; Kagel, R. O. Infrared Spectra of Inorganic Compounds (3800-45
$cm^{-1}$ ); Academic Press: New York, U. S. A., 1977; Vol. 4. - Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A&B, 5th Ed.; John Wiley & Sons, Inc.: New York, U. S. A., 1997.
- Barbucci, R.; Casolaro, M.; Corezzi, S.; Reginato, G. Polymer1986, 27, 1986. https://doi.org/10.1016/0032-3861(86)90195-3
- Drzewinski, M.; Macknight, W. J. J. Appl. Polym. Sci. 1985, 30,4735. https://doi.org/10.1002/app.1985.070301220
- Inorganic Syntheses; Allcock, H. R., Ed. in Chief; John Wiley & Sons, Inc.: New York, U. S. A., 1980; Vol. 20, p 53. https://doi.org/10.1002/9780470132517.ch16
- McNeill, K.; Bergman, R. G. J. Am. Chem. Soc. 1999, 121, 8260. https://doi.org/10.1021/ja983011p
- Iwamoto, M.; Yahiro, H.; Mizuno, N.; Zhang, W. X.; Mine, Y.;Furukawa, H.; Kagawa, S. J. Phys. Chem. 1992, 96, 9360. https://doi.org/10.1021/j100202a055
- Comprehensive Coordination Chemistry; Wilkinson, G. FRS. Ed. in Chief; Pergamon Press: Oxford, U. K, 1987; Vol. 5, p 566
- Encyclopedia of Inorganic Chemistry;Bruce King, R., Ed. in Chief; John Wiley & Sons, Inc.: New York,U. S. A., 1994; Vol. 2, p 822
- Safarik, D. J.; Eldridge, R. B. Ind. Eng. Chem. Res. 1998, 37, 2571. https://doi.org/10.1021/ie970897h
- Kudo, A.; Steinbery, M.; Bard, A. J.; Campion, A.; Fox, M. A.;Mallowk, T. E.; Webber, S. E.; White, J. M. J. Catal. 1990, 125, 565. https://doi.org/10.1016/0021-9517(90)90327-G
Cited by
- Nanocomposite Fibers Spun via an Effective Pathway vol.112, pp.12, 2008, https://doi.org/10.1021/jp711431h
- In Situ Synthesis of Oil-Based Polymer/Silver Nanocomposites by Photoinduced Electron Transfer and Free Radical Polymerization Processes vol.17, pp.4, 2010, https://doi.org/10.1163/092764410X495289
- Preparation and Evaluation of CuO/Chitosan Nanocomposite for Antibacterial Finishing Cotton Fabric vol.39, pp.3, 2010, https://doi.org/10.1177/1528083709103142
- In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy vol.18, pp.3, 2011, https://doi.org/10.1007/s10570-011-9513-3
- Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix vol.18, pp.4, 2011, https://doi.org/10.1007/s10570-011-9556-5
- Cellulose scaffolds modulated synthesis of Co3O4 nanocrystals: preparation, characterization and properties vol.18, pp.5, 2011, https://doi.org/10.1007/s10570-011-9566-3
- Cu Nanoparticles From Evaporation of Cu Granule in a Microwave Torch Plasma at Atmospheric Pressure vol.39, pp.5, 2011, https://doi.org/10.1109/TPS.2011.2119330
- Synthesis and catalytic properties of mesoporous alumina supported aluminium chloride with controllable morphology, structure and component vol.19, pp.5, 2012, https://doi.org/10.1007/s10934-011-9510-9
- A novel synthesis and optical properties of cuprous oxide nano octahedrons via microwave hydrothermal route vol.63, pp.1, 2012, https://doi.org/10.1007/s10971-012-2784-9
- Adsorption of Albumin on Silica Surfaces Modified by Silver and Copper Nanoparticles vol.2013, pp.1687-4129, 2013, https://doi.org/10.1155/2013/839016
- Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis vol.116, pp.6, 2016, https://doi.org/10.1021/acs.chemrev.5b00482
- Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules vol.21, pp.4, 2016, https://doi.org/10.3390/molecules21040520
- leaf extraction for durable ultraviolet protection and antibacterial activity vol.87, pp.19, 2017, https://doi.org/10.1177/0040517516671124
- Construction of novel coordination polymers with simple ligands vol.33, pp.5, 2008, https://doi.org/10.1007/s11243-008-9086-7
- Efficient alternative of antimicrobial nanocomposites based on cellulose acetate/Cu-NPs vol.16, pp.3, 2018, https://doi.org/10.1080/1539445X.2018.1457540
- Characteristic of nanoparticle-chitosan system: solution and thin film study vol.160, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/160/1/012001
- Structure and properties of composite films prepared from cellulose and nanocrystalline titanium dioxide particles vol.101, pp.6, 2006, https://doi.org/10.1002/app.22650
- Synthesis and Alignment of Iron Oxide Nanoparticles in a Regenerated Cellulose Film vol.27, pp.24, 2006, https://doi.org/10.1002/marc.200600543
- Copper and copper oxide nanoparticles in a cellulose support studied using anomalous small-angle X-ray scattering vol.42, pp.1, 2007, https://doi.org/10.1140/epjd/e2007-00015-y
- Biomimetic mineralization synthesis of calcium-deficient carbonate-containing hydroxyapatite in a three-dimensional network of bacterial cellulose vol.84, pp.2, 2009, https://doi.org/10.1002/jctb.2037
- nanocomposite films vol.111, pp.5, 2009, https://doi.org/10.1002/app.29236
- In situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property vol.29, pp.17, 2018, https://doi.org/10.1080/09205063.2018.1528518
- Preparation of Silver Nanoparticles in Cellulose Acetate Polymer and the Reaction Chemistry of Silver Complexes in the Polymer vol.26, pp.5, 2002, https://doi.org/10.5012/bkcs.2005.26.5.837
- Investigations into Sulfobetaine-Stabilized Cu Nanoparticle Formation: Toward Development of a Microfluidic Synthesis vol.109, pp.19, 2002, https://doi.org/10.1021/jp044777g
- Preparation of Cu Nanoparticles from Cu Powder Dispersed in 2-Propanol by Laser Ablation vol.27, pp.11, 2006, https://doi.org/10.5012/bkcs.2006.27.11.1869
- Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose vol.86, pp.4, 2002, https://doi.org/10.1016/j.carbpol.2011.07.015
- Copper Nanoparticles: Synthetic Strategies, Properties and Multifunctional Application vol.13, pp.2, 2002, https://doi.org/10.1142/s0219581x14300016
- Easy, Quick, and Reproducible Sonochemical Synthesis of CuO Nanoparticles vol.12, pp.5, 2002, https://doi.org/10.3390/ma12050804
- Microwave-assisted solvothermal in-situ synthesis of CdS nanoparticles on bacterial cellulose matrix for photocatalytic application vol.27, pp.10, 2002, https://doi.org/10.1007/s10570-020-03196-5
- Magnetically driven release of dopamine from magnetic-non-magnetic cellulose beads vol.320, pp.1, 2002, https://doi.org/10.1016/j.molliq.2020.114290
- Magnetically responsive antibacterial nanocrystalline jute cellulose nanocomposites with moderate catalytic activity vol.251, pp.None, 2002, https://doi.org/10.1016/j.carbpol.2020.117024