DOI QR코드

DOI QR Code

Purification and Characterization of a Laccase from Cerrena unicolor and Its Reactivity in Lignin Degradation


초록

For efficient biopulping process, very active and stable lignase is essential. Laccase is one of the best enzyme in terms of environmentally benign processes, since the enzyme uses oxygen as an oxidant to degrade lignin and produces no hamful prod ucts. We could purify a laccase homogeneously from Cerrena unicolor in a very active state. It shows characteristic absorption feature with blue band at λmax = 604 ㎚. Molecular weight of the enzyme is 57,608 which could be accurately determined by MALDI/TOF MS. The enzyme has 2.8 copper ions per enzyme implying apoenzymes might exist together. The enzyme is active in lignin degradation and the activity increases 4 times in the presence of ABTS as a mediator.

키워드

참고문헌

  1. Smook, G. A. Handbook for Paper and Pulp Technologists;TAPPI: Atlanta, 1989.
  2. Bajpai, P.; Bajpai, P. K.; Kondo, R. Biotechnology for EnvironmentalProtection in the Pulp and Paper Industry; SpringerVerlag: Berlin, 1999; p 29.
  3. Kirk, T. K.; Jeffries, T. W. Enzymes for Pulp and PaperProcessing; Jeffries, T. W., Viikari, L., Eds.; American ChemicalSociety; Washington, 1996; p 2.
  4. Bajpai, P.; Bajpai, P. K.; Kondo, R. Biotechnology for EnvironmentalProtection in the Pulp and Paper Industry; SpringerVerlag: Berlin, 1999; p 49.
  5. Christov, L. P.; Prior, B. A. Enzymes for Pulp and Paper Processing; Jeffries, T. W., Viikari, L., Eds.; American Chemical Society; Washington, 1996; p 208.
  6. Subramaniyan, S.; Prema, P. FEMS Microbiol. Lett. 2000, 183, 1. https://doi.org/10.1111/j.1574-6968.2000.tb08925.x
  7. Kuhad, R. C.; Singh, A.; Eriksson, K.-E. L. Biotechnology in the Pulp and Paper Industry; Springer Verlag: Berlin, 1997; p 45.
  8. Breen, A.; Singleton, F. L. Curr. Opin. Biotechnol. 1999, 10, 252. https://doi.org/10.1016/S0958-1669(99)80044-5
  9. Kuwahara, M.; Glenn, J. K.; Morgan, M. A.; Gold, M. H. FEBS Lett. 1984, 169, 247. https://doi.org/10.1016/0014-5793(84)80327-0
  10. Paszczynski, A.; Huynh, V.-B.; Crawford, R. FEMS Microbiol. Lett. 1985, 29, 37. https://doi.org/10.1111/j.1574-6968.1985.tb00831.x
  11. Pammer, J. M.; Harvey, P. J.; Shoemaker, H. E.; Schmidt, H. W.H.; Leisola, M. S. A. FEBS Lett. 1987, 220, 149. https://doi.org/10.1016/0014-5793(87)80893-1
  12. Bourbonnais, R.; Paice, M. G.; Reid, I. D.; Lanthier, P.; Yaguchi, M. Appl. Environ. Microbiol. 1995, 61, 1876.
  13. Call, H. P.; Mucke, I. J. Biotechnol. 1997, 53, 163. https://doi.org/10.1016/S0168-1656(97)01683-0
  14. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563. https://doi.org/10.1021/cr950046o
  15. Yaropolov, A. I.; Skorobogatko, O. V.; Vartanov, S. S.; Varfolomeyev, S. D. Appl. Biochem. Biotechnol. 1994, 49, 257. https://doi.org/10.1007/BF02783061
  16. Ghindilis, A. L.; Gavrilova, V. P.; Yaropolov, A. I. Biosens. Bioelectron. 1992, 7, 127. https://doi.org/10.1016/0956-5663(92)90017-H
  17. Hyung, K. H.; Jun, K. Y.; Hong, H.- G.; Kim, H. S.; Shin, W. Bull. Korean Chem. Soc. 1997, 18, 564.
  18. Hyung, K. H.; Shin, W. J. Korean Electrochem. Soc. 1999, 2, 31.
  19. Quan, D.; Kim, Y.; Yoon, K. B.; Shin, W. Bull. Korean Chem. Soc. 2002, 23, 385. https://doi.org/10.1007/BF02706739
  20. Palmore, G. T. R.; Kim, H.-H. J. Electroanal. Chem. 1999, 464, 110. https://doi.org/10.1016/S0022-0728(99)00008-X
  21. Barton, S. C.; Kim, H.-H.; Binyamin, G.; Zhang, Y.; Heller, A. J. Am. Chem. Soc. 2001, 123, 5802. https://doi.org/10.1021/ja010408b
  22. Barton, S. C.; Kim, H.-H.; Binyamin, G.; Zhang, Y.; Heller, A. J. Phys. Chem. B 2001, 105, 11917. https://doi.org/10.1021/jp012488b
  23. Leontievsky, A.; Myasoedova, N.; Polzdnyakova, N.; Golovleva, L. FEBS Lett. 1997, 413, 446. https://doi.org/10.1016/S0014-5793(97)00953-8
  24. Heinzkill, M.; Bech, L.; Halkier, T.; Schneider, P.; Anke, T. Appl. Environ. Microbiol. 1998, 64, 1601.
  25. Yaver, D. S.; Overjero, M. D. C.; Xu, F.; Nelson, B. A.; Brown, K. M.; Halkier, T.; Bernauer, S. Appl. Environ. Microbiol. 1999, 65, 4943.
  26. Jung, H.; Xu, F.; Li, K. Enzyme Microb. Technol. 2002, 30, 161. https://doi.org/10.1016/S0141-0229(01)00485-9
  27. Dean, J. F. D.; Eriksson, K.-E. L. Holzforschung 1994, 48, 21. https://doi.org/10.1515/hfsg.1994.48.s1.21
  28. Bollag, J.-M.; Leonowicz, A. Appl. Environ. Microbiol. 1984, 48,849.
  29. Wahleithner, J. A.; Xu, F.; Brown, K. M.; Brown, S. H.; Gotightly,E. J.; Halkier, T.; Kauppimen, S.; Pederson, A.; Schneider, P. Curr.Genet. 1996, 29, 395. https://doi.org/10.1007/BF02208621
  30. Xu, F.; Shin, W.; Brown, S. H.; Wahleithner, J.; Sundaram, U. M.;Solomon, E. I. Biochim. Biophys. Acta 1996, 1292, 303. https://doi.org/10.1016/0167-4838(95)00210-3
  31. Gianfreda, L.; Sannino, F.; Filazzola, M. T.; Leonowicz, A. J. Mol. Cat. B 1998, 4, 13. https://doi.org/10.1016/S1381-1177(97)00016-7
  32. Rogalski, J.; Dawidowicz, A.; Jozwik, E.; Leonowicz, A. J. Mol. Cat. B 1999, 6, 29. https://doi.org/10.1016/S1381-1177(98)00117-9
  33. Bekker, E. G.; Petrova, S. D.; Ermolova, D. V.; Elisashvili, V. I.;Sillnitsyn, A. P. Biokhimiya 1990, 55, 2019.
  34. Ni, Y.; Kubes, G. J.; Van Heinigen, A. R. P. J. Pulp Pap. Sci. 1990,16, J83.
  35. Wojtas-Wasilewska, M.; Luterpek, J.; Rogalski, J. Phytochem.1988, 27, 2731. https://doi.org/10.1016/0031-9422(88)80651-4
  36. Pelly, J. W.; Garner, C. W.; Little, G. H. Anal. Biochem. 1978, 86,341. https://doi.org/10.1016/0003-2697(78)90355-X
  37. Felsenfeld, G. Arch. Biochem. Biophys. 1960, 87, 247. https://doi.org/10.1016/0003-9861(60)90168-5
  38. Hanna, P. M.; Tamilarasan, R.; McMillin, D. R. Biochem. J. 1988, 256, 1001.
  39. Cho, N.-S.; Ohga, S.; Pashenova, N.; Leonowicz, A. Proc. 2ndInternatl Sym. For. Sci.; Chungbuk Nat. Univ.: Cheongju, Korea,2000; pp 132.
  40. Solomon, E. I.; Baldwin, M. J.; Lowery, M. D. Chem. Rev. 1992,92, 521. https://doi.org/10.1021/cr00012a003
  41. Ramasamy, K.; Kelley, R. L.; Reddy, C. A. Biochem. Biophys. Res. Commun. 1985, 131, 436. https://doi.org/10.1016/0006-291X(85)91821-2
  42. Srinivasan, C.; Dsuoza, T. M.; Boominathan, K.; Reddy, C. A. Appl. Environ. Microbiol. 1995, 61, 4174.
  43. Temp, U.; Eggert, C. Appl. Environ. Microbiol. 1999, 65, 389.
  44. Sealey, J. E.; Runge, T. M.; Ragauskas, A. J. Proceedings of Biological Sciences Symposium; TAPPI Proceedings: 1997; p 339.
  45. Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of InstrumentalAnalysis; Saunders College Publishing: Philadelphia, 1998;p 498.
  46. Trojanowski, J.; Leonowicz, A.; Hampel, B. Acta Microbiol.Polon. 1966, 15, 17.
  47. Bourbonnais, R.; Paice, M. G. Tappi J. 1996, 79, 199.
  48. Bourbonnais, R.; Paice, M. G.; Freiermuth, B.; Bodie, E.;Borneman, S. Appl. Environ. Microbiol. 1997, 63, 4627.
  49. Li, K.; Xu, F.; Eriksson, K.-E. L. Appl. Environ. Microbiol. 1999,65, 2654.
  50. Bourbonnais, R.; Paice, M. G. Appl. Microbiol. Biotechnol. 1992, 36, 823.
  51. Addleman, K.; Dumonceaux, T.; Paice, M. G.; Bourbonnais, R.; Archibald, F. S. Appl. Environ. Microbiol. 1995, 61, 3687.
  52. Appl. Environ. Microbiol. v.61 Addleman, K.;Dumonceaux, T.;Paice, M. G.;Bourbonnais, R.;Archibald, F. S.

피인용 문헌

  1. Fungal laccases – occurrence and properties vol.30, pp.2, 2006, https://doi.org/10.1111/j.1574-4976.2005.00010.x
  2. Laccase Production and Enzymatic Modification of Lignin by a Novel Peniophora sp. vol.166, pp.4, 2012, https://doi.org/10.1007/s12010-011-9496-4
  3. Fungal Laccases and Their Applications in Bioremediation vol.2014, pp.2090-0414, 2014, https://doi.org/10.1155/2014/163242
  4. Purification and Characterization of a Novel Laccase from Cerrena sp. HYB07 with Dye Decolorizing Ability vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0110834
  5. Textile dye degradation potential of plant laccase significantly enhances upon augmentation with redox mediators vol.5, pp.98, 2015, https://doi.org/10.1039/C5RA12454A
  6. Bacterial exopolysaccharides as a modern biotechnological tool for modification of fungal laccase properties and metal ion binding vol.41, pp.7, 2018, https://doi.org/10.1007/s00449-018-1928-x
  7. The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties vol.69, pp.6, 2006, https://doi.org/10.1007/s00253-005-0015-9
  8. Studies on the Pycnoporus sanguineus CCT-4518 laccase purified by hydrophobic interaction chromatography vol.75, pp.2, 2007, https://doi.org/10.1007/s00253-006-0817-4
  9. Increased production of laccase by Cerrena unicolor in submerged liquid cultures vol.23, pp.10, 2007, https://doi.org/10.1007/s11274-007-9390-y
  10. Inducers and Inhibitors of Laccase from Penicillium vol.7, pp.1, 2008, https://doi.org/10.3923/biotech.2008.35.42
  11. Concentration of fungal ligninolytic enzymes by ultrafiltration and their use in distillery effluent decolorization vol.25, pp.10, 2009, https://doi.org/10.1007/s11274-009-0079-2
  12. A Thermostable Metal-Tolerant Laccase with Bioremediation Potential from a Marine-Derived Fungus vol.11, pp.6, 2009, https://doi.org/10.1007/s10126-009-9187-0
  13. Production of laccases in submerged process by Pleurotus sajor-caju PS-2001 in relation to carbon and organic nitrogen sources, antifoams and Tween 80 vol.36, pp.1, 2009, https://doi.org/10.1007/s10295-008-0463-1
  14. VKMF-3196. Induction, isolation and properties vol.50, pp.1, 2010, https://doi.org/10.1002/jobm.200900382
  15. Degradation of Lignosulfonate by Fungal Laccase with Low Molecular Mediators vol.25, pp.10, 2002, https://doi.org/10.5012/bkcs.2004.25.10.1551
  16. Amperometric Detection of Hydroquinone and Homogentisic Acid with Laccase Immobilized Platinum Electrode vol.25, pp.6, 2004, https://doi.org/10.5012/bkcs.2004.25.6.833
  17. Sensing Characteristics of Tyrosinase Immobilized and Tyrosinase, Laccase Co-immobilized Platinum Electrodes vol.25, pp.8, 2002, https://doi.org/10.5012/bkcs.2004.25.8.1195
  18. Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure vol.7, pp.2, 2002, https://doi.org/10.5229/jkes.2004.7.2.083
  19. Determination of phenolic acids using Trametes versicolor laccase vol.71, pp.1, 2002, https://doi.org/10.1016/j.talanta.2006.04.032
  20. Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor vol.77, pp.2, 2008, https://doi.org/10.1016/j.dyepig.2007.05.015
  21. Production of laccase by Pynoporus sanguineus using 2,5 - Xylidine and ethanol vol.40, pp.4, 2002, https://doi.org/10.1590/s1517-83822009000400009
  22. Blue laccase from Galerina sp.: Properties and potential for Kraft lignin demethylation vol.46, pp.1, 2002, https://doi.org/10.1016/j.procbio.2010.07.013
  23. Study of enzymatic properties of phenol oxidase from nitrogen-fixing Azotobacter chroococcum vol.1, pp.1, 2002, https://doi.org/10.1186/2191-0855-1-14
  24. Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications vol.46, pp.5, 2002, https://doi.org/10.1016/j.procbio.2011.02.002
  25. Comparison of downstream processing methods in purification of highly active laccase vol.42, pp.10, 2002, https://doi.org/10.1007/s00449-019-02160-3