참고문헌
- Smook, G. A. Handbook for Paper and Pulp Technologists;TAPPI: Atlanta, 1989.
- Bajpai, P.; Bajpai, P. K.; Kondo, R. Biotechnology for EnvironmentalProtection in the Pulp and Paper Industry; SpringerVerlag: Berlin, 1999; p 29.
- Kirk, T. K.; Jeffries, T. W. Enzymes for Pulp and PaperProcessing; Jeffries, T. W., Viikari, L., Eds.; American ChemicalSociety; Washington, 1996; p 2.
- Bajpai, P.; Bajpai, P. K.; Kondo, R. Biotechnology for EnvironmentalProtection in the Pulp and Paper Industry; SpringerVerlag: Berlin, 1999; p 49.
- Christov, L. P.; Prior, B. A. Enzymes for Pulp and Paper Processing; Jeffries, T. W., Viikari, L., Eds.; American Chemical Society; Washington, 1996; p 208.
- Subramaniyan, S.; Prema, P. FEMS Microbiol. Lett. 2000, 183, 1. https://doi.org/10.1111/j.1574-6968.2000.tb08925.x
- Kuhad, R. C.; Singh, A.; Eriksson, K.-E. L. Biotechnology in the Pulp and Paper Industry; Springer Verlag: Berlin, 1997; p 45.
- Breen, A.; Singleton, F. L. Curr. Opin. Biotechnol. 1999, 10, 252. https://doi.org/10.1016/S0958-1669(99)80044-5
- Kuwahara, M.; Glenn, J. K.; Morgan, M. A.; Gold, M. H. FEBS Lett. 1984, 169, 247. https://doi.org/10.1016/0014-5793(84)80327-0
- Paszczynski, A.; Huynh, V.-B.; Crawford, R. FEMS Microbiol. Lett. 1985, 29, 37. https://doi.org/10.1111/j.1574-6968.1985.tb00831.x
- Pammer, J. M.; Harvey, P. J.; Shoemaker, H. E.; Schmidt, H. W.H.; Leisola, M. S. A. FEBS Lett. 1987, 220, 149. https://doi.org/10.1016/0014-5793(87)80893-1
- Bourbonnais, R.; Paice, M. G.; Reid, I. D.; Lanthier, P.; Yaguchi, M. Appl. Environ. Microbiol. 1995, 61, 1876.
- Call, H. P.; Mucke, I. J. Biotechnol. 1997, 53, 163. https://doi.org/10.1016/S0168-1656(97)01683-0
- Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563. https://doi.org/10.1021/cr950046o
- Yaropolov, A. I.; Skorobogatko, O. V.; Vartanov, S. S.; Varfolomeyev, S. D. Appl. Biochem. Biotechnol. 1994, 49, 257. https://doi.org/10.1007/BF02783061
- Ghindilis, A. L.; Gavrilova, V. P.; Yaropolov, A. I. Biosens. Bioelectron. 1992, 7, 127. https://doi.org/10.1016/0956-5663(92)90017-H
- Hyung, K. H.; Jun, K. Y.; Hong, H.- G.; Kim, H. S.; Shin, W. Bull. Korean Chem. Soc. 1997, 18, 564.
- Hyung, K. H.; Shin, W. J. Korean Electrochem. Soc. 1999, 2, 31.
- Quan, D.; Kim, Y.; Yoon, K. B.; Shin, W. Bull. Korean Chem. Soc. 2002, 23, 385. https://doi.org/10.1007/BF02706739
- Palmore, G. T. R.; Kim, H.-H. J. Electroanal. Chem. 1999, 464, 110. https://doi.org/10.1016/S0022-0728(99)00008-X
- Barton, S. C.; Kim, H.-H.; Binyamin, G.; Zhang, Y.; Heller, A. J. Am. Chem. Soc. 2001, 123, 5802. https://doi.org/10.1021/ja010408b
- Barton, S. C.; Kim, H.-H.; Binyamin, G.; Zhang, Y.; Heller, A. J. Phys. Chem. B 2001, 105, 11917. https://doi.org/10.1021/jp012488b
- Leontievsky, A.; Myasoedova, N.; Polzdnyakova, N.; Golovleva, L. FEBS Lett. 1997, 413, 446. https://doi.org/10.1016/S0014-5793(97)00953-8
- Heinzkill, M.; Bech, L.; Halkier, T.; Schneider, P.; Anke, T. Appl. Environ. Microbiol. 1998, 64, 1601.
- Yaver, D. S.; Overjero, M. D. C.; Xu, F.; Nelson, B. A.; Brown, K. M.; Halkier, T.; Bernauer, S. Appl. Environ. Microbiol. 1999, 65, 4943.
- Jung, H.; Xu, F.; Li, K. Enzyme Microb. Technol. 2002, 30, 161. https://doi.org/10.1016/S0141-0229(01)00485-9
- Dean, J. F. D.; Eriksson, K.-E. L. Holzforschung 1994, 48, 21. https://doi.org/10.1515/hfsg.1994.48.s1.21
- Bollag, J.-M.; Leonowicz, A. Appl. Environ. Microbiol. 1984, 48,849.
- Wahleithner, J. A.; Xu, F.; Brown, K. M.; Brown, S. H.; Gotightly,E. J.; Halkier, T.; Kauppimen, S.; Pederson, A.; Schneider, P. Curr.Genet. 1996, 29, 395. https://doi.org/10.1007/BF02208621
- Xu, F.; Shin, W.; Brown, S. H.; Wahleithner, J.; Sundaram, U. M.;Solomon, E. I. Biochim. Biophys. Acta 1996, 1292, 303. https://doi.org/10.1016/0167-4838(95)00210-3
- Gianfreda, L.; Sannino, F.; Filazzola, M. T.; Leonowicz, A. J. Mol. Cat. B 1998, 4, 13. https://doi.org/10.1016/S1381-1177(97)00016-7
- Rogalski, J.; Dawidowicz, A.; Jozwik, E.; Leonowicz, A. J. Mol. Cat. B 1999, 6, 29. https://doi.org/10.1016/S1381-1177(98)00117-9
- Bekker, E. G.; Petrova, S. D.; Ermolova, D. V.; Elisashvili, V. I.;Sillnitsyn, A. P. Biokhimiya 1990, 55, 2019.
- Ni, Y.; Kubes, G. J.; Van Heinigen, A. R. P. J. Pulp Pap. Sci. 1990,16, J83.
- Wojtas-Wasilewska, M.; Luterpek, J.; Rogalski, J. Phytochem.1988, 27, 2731. https://doi.org/10.1016/0031-9422(88)80651-4
- Pelly, J. W.; Garner, C. W.; Little, G. H. Anal. Biochem. 1978, 86,341. https://doi.org/10.1016/0003-2697(78)90355-X
- Felsenfeld, G. Arch. Biochem. Biophys. 1960, 87, 247. https://doi.org/10.1016/0003-9861(60)90168-5
- Hanna, P. M.; Tamilarasan, R.; McMillin, D. R. Biochem. J. 1988, 256, 1001.
- Cho, N.-S.; Ohga, S.; Pashenova, N.; Leonowicz, A. Proc. 2ndInternatl Sym. For. Sci.; Chungbuk Nat. Univ.: Cheongju, Korea,2000; pp 132.
- Solomon, E. I.; Baldwin, M. J.; Lowery, M. D. Chem. Rev. 1992,92, 521. https://doi.org/10.1021/cr00012a003
- Ramasamy, K.; Kelley, R. L.; Reddy, C. A. Biochem. Biophys. Res. Commun. 1985, 131, 436. https://doi.org/10.1016/0006-291X(85)91821-2
- Srinivasan, C.; Dsuoza, T. M.; Boominathan, K.; Reddy, C. A. Appl. Environ. Microbiol. 1995, 61, 4174.
- Temp, U.; Eggert, C. Appl. Environ. Microbiol. 1999, 65, 389.
- Sealey, J. E.; Runge, T. M.; Ragauskas, A. J. Proceedings of Biological Sciences Symposium; TAPPI Proceedings: 1997; p 339.
- Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of InstrumentalAnalysis; Saunders College Publishing: Philadelphia, 1998;p 498.
- Trojanowski, J.; Leonowicz, A.; Hampel, B. Acta Microbiol.Polon. 1966, 15, 17.
- Bourbonnais, R.; Paice, M. G. Tappi J. 1996, 79, 199.
- Bourbonnais, R.; Paice, M. G.; Freiermuth, B.; Bodie, E.;Borneman, S. Appl. Environ. Microbiol. 1997, 63, 4627.
- Li, K.; Xu, F.; Eriksson, K.-E. L. Appl. Environ. Microbiol. 1999,65, 2654.
- Bourbonnais, R.; Paice, M. G. Appl. Microbiol. Biotechnol. 1992, 36, 823.
- Addleman, K.; Dumonceaux, T.; Paice, M. G.; Bourbonnais, R.; Archibald, F. S. Appl. Environ. Microbiol. 1995, 61, 3687.
- Appl. Environ. Microbiol. v.61 Addleman, K.;Dumonceaux, T.;Paice, M. G.;Bourbonnais, R.;Archibald, F. S.
피인용 문헌
- Fungal laccases – occurrence and properties vol.30, pp.2, 2006, https://doi.org/10.1111/j.1574-4976.2005.00010.x
- Laccase Production and Enzymatic Modification of Lignin by a Novel Peniophora sp. vol.166, pp.4, 2012, https://doi.org/10.1007/s12010-011-9496-4
- Fungal Laccases and Their Applications in Bioremediation vol.2014, pp.2090-0414, 2014, https://doi.org/10.1155/2014/163242
- Purification and Characterization of a Novel Laccase from Cerrena sp. HYB07 with Dye Decolorizing Ability vol.9, pp.10, 2014, https://doi.org/10.1371/journal.pone.0110834
- Textile dye degradation potential of plant laccase significantly enhances upon augmentation with redox mediators vol.5, pp.98, 2015, https://doi.org/10.1039/C5RA12454A
- Bacterial exopolysaccharides as a modern biotechnological tool for modification of fungal laccase properties and metal ion binding vol.41, pp.7, 2018, https://doi.org/10.1007/s00449-018-1928-x
- The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties vol.69, pp.6, 2006, https://doi.org/10.1007/s00253-005-0015-9
- Studies on the Pycnoporus sanguineus CCT-4518 laccase purified by hydrophobic interaction chromatography vol.75, pp.2, 2007, https://doi.org/10.1007/s00253-006-0817-4
- Increased production of laccase by Cerrena unicolor in submerged liquid cultures vol.23, pp.10, 2007, https://doi.org/10.1007/s11274-007-9390-y
- Inducers and Inhibitors of Laccase from Penicillium vol.7, pp.1, 2008, https://doi.org/10.3923/biotech.2008.35.42
- Concentration of fungal ligninolytic enzymes by ultrafiltration and their use in distillery effluent decolorization vol.25, pp.10, 2009, https://doi.org/10.1007/s11274-009-0079-2
- A Thermostable Metal-Tolerant Laccase with Bioremediation Potential from a Marine-Derived Fungus vol.11, pp.6, 2009, https://doi.org/10.1007/s10126-009-9187-0
- Production of laccases in submerged process by Pleurotus sajor-caju PS-2001 in relation to carbon and organic nitrogen sources, antifoams and Tween 80 vol.36, pp.1, 2009, https://doi.org/10.1007/s10295-008-0463-1
- VKMF-3196. Induction, isolation and properties vol.50, pp.1, 2010, https://doi.org/10.1002/jobm.200900382
- Degradation of Lignosulfonate by Fungal Laccase with Low Molecular Mediators vol.25, pp.10, 2002, https://doi.org/10.5012/bkcs.2004.25.10.1551
- Amperometric Detection of Hydroquinone and Homogentisic Acid with Laccase Immobilized Platinum Electrode vol.25, pp.6, 2004, https://doi.org/10.5012/bkcs.2004.25.6.833
- Sensing Characteristics of Tyrosinase Immobilized and Tyrosinase, Laccase Co-immobilized Platinum Electrodes vol.25, pp.8, 2002, https://doi.org/10.5012/bkcs.2004.25.8.1195
- Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure vol.7, pp.2, 2002, https://doi.org/10.5229/jkes.2004.7.2.083
- Determination of phenolic acids using Trametes versicolor laccase vol.71, pp.1, 2002, https://doi.org/10.1016/j.talanta.2006.04.032
- Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor vol.77, pp.2, 2008, https://doi.org/10.1016/j.dyepig.2007.05.015
- Production of laccase by Pynoporus sanguineus using 2,5 - Xylidine and ethanol vol.40, pp.4, 2002, https://doi.org/10.1590/s1517-83822009000400009
- Blue laccase from Galerina sp.: Properties and potential for Kraft lignin demethylation vol.46, pp.1, 2002, https://doi.org/10.1016/j.procbio.2010.07.013
- Study of enzymatic properties of phenol oxidase from nitrogen-fixing Azotobacter chroococcum vol.1, pp.1, 2002, https://doi.org/10.1186/2191-0855-1-14
- Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications vol.46, pp.5, 2002, https://doi.org/10.1016/j.procbio.2011.02.002
- Comparison of downstream processing methods in purification of highly active laccase vol.42, pp.10, 2002, https://doi.org/10.1007/s00449-019-02160-3