DOI QR코드

DOI QR Code

Theoretical Studies for Strong Hydrogen Bonds in Trimethyl Phosphate-(HNO3)n Complexes, n=1-3


Abstract

We have calculated energies and structures for the hydrogen bonded clusters between trimethyl phosphate and nitric acids. The hydrogen bond lengths between phosphoryl oxygen and the proton of nitric acid are short compared to normal hydrogen bonds, and the H-bond strengths are fairly strong. The hydrogen bond length becomes longer, and the strength becomes weaker, as more nitric acids are bound to the TMP. The average H-bond strengths for the $TMP-(HNO_3)_n$ complexes with n = 1, 2, and 3, are 9.6, 7.9 and 6.4kcal/mol at 300K respectively. Weak hydrogen bonds between nitrate oxygen and methyl proton might contribute to the stability of the clusters. Not only the BSSE but also the fragment relaxation energies should be considered to calculate hydrogen bond strengths for the complexes accurately.

Keywords

References

  1. Schuster, P.; Zundel, G.; Sandorfy, C. The Hydrogen Bond: Recent Developments in Theory and Experiments; North-Holland: Amsterdam, 1976.
  2. Vinogradov, S. N.; Linnell, R. H. Hydrogen Bonding; Van Nostrand Reinhold: New York, 1971.
  3. Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond; Freeman: San Francisco, 1960.
  4. Cleland, W. W.; Kreevoy, M. M. Science 1994, 264, 1887. https://doi.org/10.1126/science.8009219
  5. Frey, P. A.; White, S. A.; Tobin, J. B. Science 1994, 264, 1927. https://doi.org/10.1126/science.7661899
  6. Gerlt, J. A.; Gassman, P. G. J. Am. Chem. Soc. 1993, 115, 11552. https://doi.org/10.1021/ja00077a062
  7. Kim, K. S.; Oh, K. S.; Lee, J. Y. Proc. Natl. Acad. Sci. USA 2000, 97, 6373. https://doi.org/10.1073/pnas.97.12.6373
  8. Kim, K. S.; Kim, D.; Lee, J. Y.; Tarakeshwar, P.; Oh, K. S. Biochem. 2002, 41, 5300. https://doi.org/10.1021/bi0255118
  9. Oh, K. S.; Cha, S.-S.; Kim, D.-H.; Cho, H.-S.; Ha, N.-C.; Choi, G.; Lee, J. Y.; Tarakeshwar, P.; Son, H. S.; Choi, K. Y.; Oh, B.-H.; Kim, K. S. Biochem. 2000, 39, 13891. https://doi.org/10.1021/bi001629h
  10. Hong, B. H.; Lee, C.-W.; Lee, J. Y.; Kim, J. C.; Kim, K. S. J. Am. Chem. Soc. 2001, 123, 10748. https://doi.org/10.1021/ja016526g
  11. Hadzi, D. Pure Appl. Chem. 1965, 11, 435. https://doi.org/10.1351/pac196511030435
  12. Kreevoy, M. M.; Liang, T. M. J. Am. Chem. Soc. 1980, 102, 3315. https://doi.org/10.1021/ja00530a002
  13. Heni, M.; Illenberger, E. J. Chem. Phys. 1985, 83, 6056. https://doi.org/10.1063/1.449594
  14. Nash, K. L. Solvent Extr. Ion Exch. 1993, 11, 729. https://doi.org/10.1080/07366299308918184
  15. Horwitz, E. P.; Kalina, D. G.; Diamond, H.; Vandegrift, G. F.; Schultz, W. W. Solvent Extr. Ion. Exch. 1985, 3, 75. https://doi.org/10.1080/07366298508918504
  16. Cecille, L.; Casarci, M.; Pietrelli, In New Seperation Chemistry Techniques for Radioactive Waste and Other Specific Applications; Commission of the European Communities, Ed.; Elsevier Applied Science: London, New York, 1991.
  17. Wai, C. M.; Waller, B. Ind. Eng. Chem. Res. 2000, 39, 4837. https://doi.org/10.1021/ie0002879
  18. Samsonov, M. D.; Wai, C. M.; Lee, S.-C.; Kulyako, Y.; Smart, N. G. Chem. Commun. 2001, 1868.
  19. Baaden, M.; Berny, F.; Wipff, G. J. Mol. Liq. 2001, 90, 1. https://doi.org/10.1016/S0167-7322(00)00174-4
  20. Baaden, M.; Burgard, M.; Wipff, G. J. Phys. Chem. B 2001, 105, 11131. https://doi.org/10.1021/jp011890n
  21. Frisch, M. J. et al., Gaussian 98 (Revision A.9); Gaussian, Inc.: Pittsburgh PA, 1998.
  22. Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods; Gaussian, Inc.: Pittsburgh, 1996.
  23. Scheiner, S. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; VCH: New York, 1991; Vol. 2, p 165. https://doi.org/10.1002/9780470125793.ch5
  24. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  25. George, L.; Viswanathan, K. S.; Singh, S. J. Phys. Chem. 1997, 101, 2459.
  26. Sankaran, K.; Vidya, V.; Viswanathan, K. S.; George, L.; Singh, S. J. Phys. Chem. 1998, 102, 2944. https://doi.org/10.1021/jp9733330
  27. van Duijneveldt-van de Rijdt, J. G. C. M.; van Duijneveldt, F. B. In Theoretical Treatments of Hydrogen Bonding; Hadzi, D., Ed.; John Wiley & Sons: Chichester, 1997.
  28. Perrin, C. L.; Nielson, J. B. Annu. Rev. Phys. Chem. 1997, 48, 511. https://doi.org/10.1146/annurev.physchem.48.1.511
  29. Gordon, A. J.; Ford, R. A. The Chemist's Companion; John Wiley & Sons, Inc.: New York, 1972.
  30. Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond; Oxford University Press: New York, 1999.
  31. Enokida, Y.; El-Fatah, S. A.; Wai, C. M. Ind. Eng. Chem. Res. 2002, 41, 2282. https://doi.org/10.1021/ie010761q
  32. Lee, S.-C. Master's Thesis; University of Idaho: Moscow, Idaho, USA, 2002.

Cited by

  1. Proton Transfer of Formamide + nH2O (n = 0−3): Protective and Assistant Effect of the Water Molecule vol.108, pp.46, 2004, https://doi.org/10.1021/jp047248l
  2. Theoretical Studies for Trimethyl Phosphate Complexes with HNO3 and Water as a CO2-Soluble Extractant vol.44, pp.10, 2002, https://doi.org/10.1021/ie0492597
  3. Theoretical study of the solvent effects on the molecular structure and vibrational spectra of 2-hydroxy-4-methyl-3-nitropyridine vol.1067, pp.None, 2014, https://doi.org/10.1016/j.molstruc.2014.03.017