DOI QR코드

DOI QR Code

Catalytic Dehydration of Methanol to Dimethyl Ether (DME) over Solid-Acid Catalysts


Abstract

The conversion of dimethyl ether(DME) has been carried out over $\gamma-alumina$, silica-alumina, and modified $\gamma-aluminal$ catalysts. Especially, the water effect has been investigated on purpose to develop a suitable catalyst for one-step synthesis of DME from $CO_2$ hydrgenation, The $\gamma-Al_2O_3$ modified with 1 wt% silica is more active and less deactivated by water than unmodified one. $CO_2has$ no effect on catalytic dehydration of methanol to DME.

Keywords

References

  1. Rouhi, A. M. Chem. Eng. News 1995, May 29.
  2. Xu, M.; Lunsford, J. H.; Goodman, D. W.; Bhattacharyya, A. Appl.CoM. A 1997,149, 289. https://doi.org/10.1016/S0926-860X(96)00275-X
  3. HaldorTopsoe, U.S. Patent 4,536,485, 1993.
  4. HaldorTopsoe, U.S. Patent 5,189,203, 1993.
  5. Jun, K.-W.; Rama Rao, K. S.; Jung, M.-H.; Lee, K.-W. Bull. Korean Chem. Soc. 1998,19, 466.
  6. Jun, K.-W.; Shen, W.-J.; Lee, K.-W. Bull. Korean Chem. Soc. 1999,20,993.
  7. Shen, W.-J.; Jun, K.-W; Choi, H.-S.; Lee, K.-W. Korean J. Chem. Eng. 2000, 77,210. https://doi.org/10.1007/BF02707145
  8. Tao, J.-L.; Jun, K.-W; Lee, K.-W. Appl. Organomet. Chem. 2001, 15, 105. https://doi.org/10.1002/1099-0739(200102)15:2<105::AID-AOC100>3.0.CO;2-B
  9. Gates, B. C. In Catalytic Chemistry; John Wdey & Sons: New York, 1992; p 323.
  10. Hendriksen, B. A.; Pearce, D. R.; Rudham, R. J. Catal. 1972, 24, 82. https://doi.org/10.1016/0021-9517(72)90010-3

Cited by

  1. Dimethyl Ether Formation Using a Zeolite Catalyst Impregnated with Ceria vol.49, pp.2, 2011, https://doi.org/10.9713/kcer.2011.49.2.155
  2. Modeling and Simulation of an Integrated Micro Packed Bed Reactor-Heat Exchanger Configuration for Direct Dimethyl Ether Synthesis vol.54, pp.13-15, 2011, https://doi.org/10.1007/s11244-011-9701-2
  3. The Synthesis and Catalytic Activity of Slurry Catalyst for Methanol Dehydration to Dimethyl Ether vol.34, pp.8, 2012, https://doi.org/10.1080/15567030903530582
  4. Kinetic Analysis of Methanol to Dimethyl Ether Reaction over H-MFI Catalyst vol.53, pp.38, 2014, https://doi.org/10.1021/ie502775u
  5. Evaluation of the acidic properties of the B2O3–Al2O3 and Pt/B2O3–Al2O3 systems by spin probe EPR spectroscopy and their correlation with the occurrence of the joint hydroisomerization of heptane and benzene vol.57, pp.4, 2016, https://doi.org/10.1134/S0023158416040169
  6. Effect of Reaction Conditions on the Catalytic Dehydration of Methanol to Dimethyl Ether Over a K-modified HZSM-5 Catalyst vol.147, pp.3, 2017, https://doi.org/10.1007/s10562-017-1981-0
  7. Methanol Dehydration to Dimethyl Ether over Silica Derived from Rice Husk as the Component-Based Catalysts vol.931-932, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.931-932.17
  8. Development and integration of new processes consuming carbon dioxide in multi-plant chemical production complexes vol.7, pp.2, 2005, https://doi.org/10.1007/s10098-004-0270-y
  9. Catalytic properties of zirconium phosphate and double phosphates of zirconium and alkali metals with a NaZr2(PO4)3 structure vol.79, pp.4, 2006, https://doi.org/10.1134/S1070427206040215
  10. Synthesis of Dimethyl Ether over Modified H-Mordenite Zeolites and Bifunctional Catalysts Composed of Cu/ZnO/ZrO2 and Modified H-Mordenite Zeolite in Slurry Phase vol.129, pp.1-2, 2009, https://doi.org/10.1007/s10562-008-9779-8
  11. Pore network model for catalytic dehydration of methanol at particle level vol.55, pp.2, 2009, https://doi.org/10.1002/aic.11665
  12. Highly Water-Enhanced H-ZSM-5 Catalysts for Dehydration of Methanol to Dimethyl Ether vol.24, pp.1, 2002, https://doi.org/10.5012/bkcs.2003.24.1.106
  13. The direct synthesis of dimethyl ether from syngas over hybrid catalysts with sulfate-modified γ-alumina as methanol dehydration components vol.250, pp.1, 2002, https://doi.org/10.1016/j.molcata.2006.01.053
  14. Intrinsic Kinetics Study of Dimethyl Ether Synthesis from Methanol on &ggr;-Al2O3 Catalysts vol.47, pp.9, 2002, https://doi.org/10.1021/ie800051h
  15. Relationship between surface acidity and activity of solid-acid catalysts in vapour phase dehydration of methanol vol.90, pp.9, 2002, https://doi.org/10.1016/j.fuproc.2009.04.018
  16. Dehydration of methanol over Nordstrandite based catalysts for dimethyl ether synthesis vol.15, pp.5, 2009, https://doi.org/10.1016/j.jiec.2009.09.037
  17. Influence of Ionic Liquid as a Template on Preparation of Porous η-Al2O3 to DME Synthesis from Methanol vol.31, pp.6, 2010, https://doi.org/10.5012/bkcs.2010.31.6.1628
  18. Performance of modified H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether vol.91, pp.10, 2002, https://doi.org/10.1016/j.fuproc.2010.03.035
  19. Liquid-phase Dehydration of 1-Phenylethanol to Styrene over an Acidic Resin Catalyst vol.32, pp.4, 2002, https://doi.org/10.5012/bkcs.2011.32.4.1327
  20. Potential routes for thermochemical biorefineries vol.7, pp.5, 2013, https://doi.org/10.1002/bbb.1409
  21. Development of Heterogeneous Catalysts for Dehydration of Methanol to Dimethyl Ether: A Review vol.11, pp.1, 2019, https://doi.org/10.1134/s2070050419010045
  22. Phosphorus-Containing Mesoporous Carbon Acid Catalyst for Methanol Dehydration to Dimethyl Ether vol.58, pp.10, 2019, https://doi.org/10.1021/acs.iecr.8b05897
  23. Strategies for the Intensification of CO2 Valorization in the One-Step Dimethyl Ether Synthesis Process vol.59, pp.2, 2002, https://doi.org/10.1021/acs.iecr.9b05749
  24. Effect of surface acidity on the catalytic activity and deactivation of supported sulfonic acids during dehydration of methanol to DME vol.44, pp.39, 2020, https://doi.org/10.1039/d0nj00229a