DOI QR코드

DOI QR Code

Vibrational Structure and Predissociation of Ar-CO2 by CO2 Symmetric Stretching Mode Coupled with Ar Motion

  • Jung, Jae-Hoon (Department of Chemistry and School of Molecular Science (BK21), Sungkyunkwan University) ;
  • Sun, Ho-Sung (Department of Chemistry and School of Molecular Science (BK21), Sungkyunkwan University)
  • Published : 2002.02.20

Abstract

The computationally simple quantum mechanical method (VSCF-DWB-IOS) has been applied to studying the Ar-$CO_2$ vibrational predissociation phenomenon. The new methodology utilizes the vibrational self-consistent field method to determine the vibrational structure of the van der Waals complex, the distorted-wave Born approximation for dissociating process, and the infinite-order sudden approximation for the continuum dissociating product of $CO_2$. The dissociation due to the coupling of the symmetric stretching vibrational motion of $CO_2$ with the motion of the Ar van der Waals mode has been extensively investigated. The lifetimes of transient excited vibrational states, linewidths of absorption peak, and the rotational state distributions of the product, $CO_2$ have been computed. It has been found that the lifetime of the Ar-$CO_2$ in excited vibrational state is very long compared with that of triatomic van der Waals complexes and the product $CO_2$ carries a major portion of dissociation energy as a rotational energy.

Keywords

References

  1. Rohrbacher, A.; Halberstadt, N.; Janda, K. C. Ann. Rev. Phys. Chem. 2000, 51, 405 https://doi.org/10.1146/annurev.physchem.51.1.405
  2. Parker, G. A.; Snow, R. L.; Pack, R. T. J. Chem. Phys. 1976, 64, 1668 https://doi.org/10.1063/1.432340
  3. Preston, R. K.; Pack, R. T. J. Chem. Phys. 1977, 66, 2480 https://doi.org/10.1063/1.434243
  4. Hough, A. M.; Howard, B. J. J. Chem. Soc. Faraday Trans. 1987, 83, 173 https://doi.org/10.1039/f29878300173
  5. Roche, C. F.; Ernesti, A.; Hutson, J. M. J. Chem. Phys. 1996, 104, 2156 https://doi.org/10.1063/1.470971
  6. Marshall, P. J.; Szczesniak, M. M.; Sadlej, J.; Chalasinski, G.; ter Horst, M. A.;. Jameson, C. J. J. Chem. Phys. 1996, 104, 6569 https://doi.org/10.1063/1.471376
  7. ter Horst, M. A.; Jameson, C. J. J. Chem. Phys. 1996, 105, 6787 https://doi.org/10.1063/1.471854
  8. Hutson, J. M.; Ernesti, A.; Law, M. M.; Roche, C. F.; Wheatly, R. J. J. Chem. Phys. 1996, 105, 9130 https://doi.org/10.1063/1.472747
  9. Rak, J.; Szczesniak, M. M.; Chalasinski, G.; Cybulski, S. M. J. Chem. Phys. 1997, 106, 10215 https://doi.org/10.1063/1.474105
  10. Roche, C. F.; Dickinson, A. S.; Ernesti, A.; Hutson, J. M. J. Chem. Phys. 1997, 107, 1824 https://doi.org/10.1063/1.474534
  11. Thibault, F.; Boissoles, J.; Boulet, C.; Ozanne, L.; Bouanich, J. P.; Roche, C. F.; Hutson, J. M. J. Chem. Phys. 1998, 109, 6338 https://doi.org/10.1063/1.477187
  12. Misquitta, A. J.; Bukowski, R.; Szalewicz, K. J. Chem. Phys. 2000, 112, 5308 https://doi.org/10.1063/1.481120
  13. Boulet, C.; Isnard, P.; Arie, E. J. Quant. Spectrosc. Radiat. Transf. 1974, 14, 637 https://doi.org/10.1016/0022-4073(74)90039-9
  14. Herpin, M. C.; Lallermand, P. J. Quant. Spectrosc. Radiat. Transf. 1975, 15, 779 https://doi.org/10.1016/0022-4073(75)90089-8
  15. Meyer, T. W.; Rhodes, C. K.; Haus, H. A. Phys. Rev. A 1975, 12, 1993 https://doi.org/10.1103/PhysRevA.12.1993
  16. Loesch, H. J. Chem. Phys. 1976, 13, 431
  17. Steed, J. M.; Dixon, T. A.; Kelmperer, W. J. Chem. Phys. 1979, 79, 4095
  18. Bulanin, M. O.; Bulychev, V. P.; Khodos, E. B. Opt. Spectrosc. 1980, 48, 403
  19. Kalinim, A. P.; Khromov, V. N.; Leonas, V. R. Mol. Phys. 1982, 47, 811 https://doi.org/10.1080/00268978200100602
  20. Jameson, C. J.; Jameson, A. K.; Smith, N. C.; Jackowski, K. J. Chem. Phys. 1987, 86, 2717
  21. Randall, R. W.; Walsh, M. A.; Howard, B. J. Faraday Symp. Chem. Soc. 1988, 85, 13
  22. Fraser, G. T.; Pine, A. S.; Suenram, R. D. J. Chem. Phys. 1988, 88, 6157 https://doi.org/10.1063/1.454454
  23. Sharpe, S. W.; Reifschneider, D.; Wittig, C.; Beaudet, R. A. J. Chem. Phys. 1991, 94, 233 https://doi.org/10.1063/1.460380
  24. Margottin-Maclou, M.; Henry, A.; Valentin, A. J. Chem. Phys. 1992, 96, 1715 https://doi.org/10.1063/1.462126
  25. Thibault, F.; Boissoles, J.; Le Doucem, R.; Bouanich, J. P. J. Chem. Phys. 1992, 96, 4945 https://doi.org/10.1063/1.462737
  26. Bohac, E. J.; Marshall, M. D.; Miller, R. E. J. Chem. Phys. 1992, 97, 4890 https://doi.org/10.1063/1.463951
  27. Bohac, E. J.; Marshall, M. D.; Miller, R. E. J. Chem. Phys. 1992, 97, 4901 https://doi.org/10.1063/1.463843
  28. Brownsword, R. A.; Salh, J. S.; Smith, I. W. M. J. Chem. Soc. Faraday Trans. 1995, 91, 191 https://doi.org/10.1039/ft9959100191
  29. Mader, H.; Heineking, N.; Stahl, W.; Jager, W.; Xu, Y. J. Chem. Soc. Faraday Trans. 1996, 92, 901 https://doi.org/10.1039/ft9969200901
  30. Ceotto, M.; Garcia-Vela, A. J. Chem. Phys. 2001, 115, 2146 https://doi.org/10.1063/1.1385153
  31. Seong, J.; Sun, H.; Schatz, G. C.; Ratner, M. A.; Gerber, R. B. J. Phys. Chem. A 1998, 102, 9345 https://doi.org/10.1021/jp9812132
  32. Jung, J.; Sun, H. Chem. Phys. Lett. 2001, 336, 311 https://doi.org/10.1016/S0009-2614(01)00133-6
  33. Jung, J.; Sun, H. Mol. Phys. 2001, 99, 1867 https://doi.org/10.1080/00268970110078326
  34. Wright, N. J.; Gerber, R. B. J. Chem. Phys. 2001, 114, 8763 https://doi.org/10.1063/1.1357439
  35. Suzuki, I. J. Mol. Spectrosc. 1968, 25, 479 https://doi.org/10.1016/S0022-2852(68)80018-9
  36. Herzberg, G. I. Spectra of Diatomic Molecules; Van Nostrand Reinhold: New York, 1950
  37. Cybulski, S. M.; Kendall, R. A.; Chalasinski, G.; Severson, M. W.; Szczesniak, M. M. J. Chem. Phys. 1997, 106, 7731 https://doi.org/10.1063/1.473798

Cited by

  1. Rotational State Distributions of I2(B) from Vibrational Predissociation of I2(B)-Ne vol.25, pp.9, 2002, https://doi.org/10.5012/bkcs.2004.25.9.1397