DOI QR코드

DOI QR Code

Determination of Lead in Different Samples by Atomic Absorption Spectrometry after Preconcentration with Dithizone Immobilized on Surfactant-Coated Alumina

  • Dadfarnia, S. ;
  • Haji Shabani, A.M. ;
  • Dehgan Shirie, H.
  • Published : 2002.04.20

Abstract

A simple and rapid technique for the separation and preconcentration of lead in water and biological samples has been devised. Preconcentrationis based on the depositionof analyte onto a column packed with dithizone immobilized on sodium dodecyl sulfate coated alumina at pH $\geq$ 3. The trapped lead is eluted with 5 mL of 4 M nitric acid and determined by flame atomic absorption spectroscopy. A sample of 1 L, results in a preconcentration factor of 200 and the precision at 20${\mu}g$ $L^{-1}$ is 1.3%(n=8). The procedure is applied to tap water, well water, river water, vegetable extract and milk samples, and accuracy is assessed through recovery experiments and by independent analysis by furnace atomic absorption.

Keywords

References

  1. Chisholm, J. J. Scientific American 1971, 224, 15.
  2. Trrner, D. Chem. Br. 1980, 16, 312.
  3. Lynarn, D. R.; Plantanido, L. G.; Cole, J. F. Environmental Lead;Academic Press: New York, 1975.
  4. The Biochemistry of Lead in the Environmental; Nriagu, J. O.,Ed.; Elsevier: Amsterdam, 1978.
  5. Analytical Quality Control (Harmonised Monitoring) Committee,Analyst 1985, 110, 1. https://doi.org/10.1039/an9851000001
  6. Genaro, M. C.; Balocchi, C.; Campi, E.; Mentasti, E.; Argua, R.Anal. Chem. Acta 1983, 151, 339. https://doi.org/10.1016/S0003-2670(00)80095-1
  7. De Mora, S. J.; Harrison, R. M. Anal. Chem. Acta 1983, 153, 307. https://doi.org/10.1016/S0003-2670(00)85520-8
  8. Reggers, G.; van Grieken, R.; Fresenius, Z. Anal. Chem. 1984,317, 520. https://doi.org/10.1007/BF00511918
  9. Brajter, K.; Miazek, I.; Fresenius, Z. Anal. Chem. 1983, 315, 121. https://doi.org/10.1007/BF00488880
  10. Uzawa, A.; Narukawa, T.; Okutani, T. Anal. Sci. 1998, 14, 395. https://doi.org/10.2116/analsci.14.395
  11. Valfredo, A. L.; Sergio, L. C. F. Anal. Chem. Acta 2001, 441, 281. https://doi.org/10.1016/S0003-2670(01)01125-4
  12. Dojozan, D. j.; Pournaghi-Azar, M. H.; Toutounchi-asr, J. Talanta1998, 46, 123. https://doi.org/10.1016/S0039-9140(97)00252-X
  13. Dadfarnia, S.; McLeod, C. W. Appl. Spec. 1994, 48, 133.
  14. Dadfarnia, S.; Jafarzadeh, M. H. Microchem. J. 1999, 63, 226. https://doi.org/10.1006/mchj.1999.1785
  15. Hiraide, M.; Ohta,Y.; Kawaguchi, H.; Fresenius, J. Anal. Chem.1994, 46, 123.
  16. Hiraide, M.; Iwasawa, J.; Hiramatsu, S.; Kawaguchi, H. Anal. Sci.1995, 11, 611. https://doi.org/10.2116/analsci.11.611
  17. Manzoori, J. L.; Sorouraddin, M. H.; Haji Shabani, A. M. J. Anal.At. Spectrom. 1998, 13, 305. https://doi.org/10.1039/a707520k
  18. Manzoori, J. L.; Sorouraddin, M. H.; Haji Shabani, A. M.Microchem. J. 1999, 63, 295. https://doi.org/10.1006/mchj.1999.1793
  19. Valsaraj, K. T. Sep. Sci. Technol. 1992, 27, 1633.
  20. Dadfarnia, S.; Green, I.; McLeod, C. W. Anal. Procc. 1994, 31,61. https://doi.org/10.1039/ai9943100061
  21. Sandell, E. B. Colorimetric Determination of Trace of Metals;Interscience: New York, 1956; p 84.

Cited by

  1. Preconcentration of Palladium in Aqueous Samples Using a Surfactant‐Coated Alumina Modified with Thioridazine · HCl and Its Determination by Atomic Absorption Spectrometry vol.37, pp.7, 2004, https://doi.org/10.1081/AL-120035910
  2. Flame atomic absorption spectrometric determination of trace amounts of Pb(II) and Cr(III) in biological, food and environmental samples after preconcentration by modified nano-alumina vol.172, pp.1-2, 2011, https://doi.org/10.1007/s00604-010-0478-y
  3. Indirect Determination of Sulfadiazine by Cloud Point Extraction/Flow Injection-Flame Atomic Absorption (CPE/FI-FAAS) Spectrometry vol.58, pp.4, 2011, https://doi.org/10.1002/jccs.201190013
  4. Nanoadsorbents: Classification, Preparation, and Applications (with Emphasis on Aqueous Media) vol.113, pp.10, 2013, https://doi.org/10.1021/cr400086v
  5. Determination of Trace Amounts of Zinc, Iron and Copper by Flame Atomic Absorption after Their Preconcentration Using Sodium Dodecyl Sulfate (SDS) Coated Alumina Nanoparticles Modified with 3-Mercapto-D-Valin from Environmental Samples vol.05, pp.17, 2014, https://doi.org/10.4236/ajac.2014.517129
  6. A review on applications of nanoparticles for the preconcentration of environmental pollutants vol.19, pp.44, 2009, https://doi.org/10.1039/b901933b
  7. Lead Remediation Using Smart Materials. A Review vol.0, pp.0, 2019, https://doi.org/10.1515/zpch-2018-1205
  8. Highly Selective and Sensitive Preconcentration of Mercury Ion and Determination by Cold Vapor Atomic Absorption Spectroscopy vol.39, pp.6, 2006, https://doi.org/10.1080/00032710600622167
  9. Separation and preconcentration procedures for the determination of lead using spectrometric techniques: A review vol.69, pp.1, 2006, https://doi.org/10.1016/j.talanta.2005.10.043
  10. Solid phase extraction method for selective determination of Pb(II) in water samples using 4-(4-methoxybenzylidenimine) thiophenole vol.142, pp.1, 2002, https://doi.org/10.1016/j.jhazmat.2006.08.033
  11. Speciation and determination of thallium by on-line microcolumn separation/preconcentration by flow injection-flame atomic absorption spectrometry using immobilized oxine as sorbent vol.148, pp.1, 2002, https://doi.org/10.1016/j.jhazmat.2007.02.059
  12. Spectrophotometric determination of lead after preconcentration of its diphenylthiocarbazone complex on an Amberlite XAD-1180 column vol.70, pp.4, 2002, https://doi.org/10.1016/j.saa.2007.09.007
  13. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine vol.181, pp.1, 2002, https://doi.org/10.1016/j.jhazmat.2010.05.089
  14. Salacca zalacca skin and its modified form as biosorbents for Hg2+ removal from aqueous solution vol.13, pp.3, 2002, https://doi.org/10.1080/17518253.2020.1803994
  15. Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials vol.445, pp.None, 2002, https://doi.org/10.1016/j.ccr.2021.214100