DOI QR코드

DOI QR Code

Structure, Spectroscopic Properties and Reactions of Interstellar Molecule HC2N and Isomers :Ab initio Study


Abstract

Calculations are presented for the molecule HC2N and its geometrical isomers. The structures, harmonic frequencies and dipole moments are reported. The potential energy surface of the [H,C,C,N] system is investigated in detail, and the transition states, intermediate complexes, and the energies of barrier for the isomerization and dissociation reactions are computed in order to determine the reaction paths and to estimate the stability of the isomers. The barriers of isomerization among HCCN, HCNC and HNCC are computed to be rather large and dissociations of these molecules are highly endothermic, indicating that these molecules are kinetically stable. The association reactions HC + CN→HCCN, HC + NC→HCNC, and HN + CC →HNCC are barrierless and very exothermic, suggesting that they may be considered as efficient means of producing the HCCN and the isomers in the laboratory and in interstellar space.

Keywords

References

  1. Ohishi, M.; Suzuki, H.; Ishikawa, S.; Yamada, C.; Kanamori, H.; Irvine, W. M.; Brown, R. D.; Godfrey, P. D.; Kaifu, N. Astrophys. J. 1992, 380, L39. https://doi.org/10.1086/186168
  2. Matthews, H. E.; Irvine, W.; Freiberg, P.; Brown, R. D.; Godfrey, P. D. Nature 1984, 310, 125. https://doi.org/10.1038/310125a0
  3. Fuente, A.; Cernicharo, J.; Barcia, A.; Gomez-Gonzalos, J. Atron. Astrophys. 1990, 231, 151.
  4. Saito, S.; Kawaguchi, K.; Yamamoto, S.; Ohishi, M.; Suzuki, H.; Kaifu, N. Astrophys. J. 1987, 317, L115. https://doi.org/10.1086/184923
  5. Bell, M. B.; Avery, L. W.; Feldman, A. Astrophys. J. 1993, 417, L37. https://doi.org/10.1086/187088
  6. Yamamoto, S.; Saito, S.; Kawaguchi, K.; Kaifu, N.; Suzuki, H.; Ohishi, M.; Astrophys. J. 1987, 317, L119. https://doi.org/10.1086/184924
  7. Ohishi, M.; Kaifu, N.; Kawaguchi, K.; Murakami, A.; Saito, S.; Yamamoto, S.; Ishikawa, S.-I.; Fujita, Y.; Shiratori, Y.; Irvine, W. M. Astrophys. J. 1989, 345, L83. https://doi.org/10.1086/185558
  8. Bell, M. B.; Feldman, P. A.; Travers, M. J.; McCarthy, M. C.; Gottlieb, C. A.; Thaddeus, P. Astrophys. J. 1997, 483, 61. https://doi.org/10.1086/310732
  9. da Silva, J. B. P.; Ramos, M. N. J. Intl. J. Quantum Chem. 1992, 43, 215. https://doi.org/10.1002/qua.560430205
  10. Francisco, J. A.; Richardson, S. L. J. Chem. Phys. 1994, 101, 7707. https://doi.org/10.1063/1.468264
  11. Botschwina, P.; Horn, M.; Seeger, S.; Flugge, J. Mol. Phys. 1993, 78, 191. https://doi.org/10.1080/00268979300100161
  12. Botschwina, P.; Schulz, B.; Horn, M.; Matuschewski, M. Chem. Phys. 1995, 190, 345. https://doi.org/10.1016/0301-0104(94)00350-J
  13. Tolle, F.; Ungerechts, H.; Walmsley, C. M.; Winnewisser, G.; Churchwell, E. Astron. Astrophys 1981, 95, 143.
  14. McCarthy, M. C.; Apponi, A. J.; Gordon, V. D.; Gottlieb, C. A.; Thaddeus, P.; Crawford, T. D.; Stanton, J. F. J. Chem. Phys. 1999, 111, 6750. https://doi.org/10.1063/1.479971
  15. Tang, J.; Sumiyoshi, Y.; Endo, Y. Chem. Phys. Lett. 1999, 315, 69. https://doi.org/10.1016/S0009-2614(99)01213-0
  16. Aoki, K.; Ikuta, S.; Nomura, O. J. Chem. Phys. 1993, 99, 3809. https://doi.org/10.1063/1.466127
  17. Aoki, K.; Ikuta, S.; Murakami, A. Chem. Phys. Lett. 1993, 209, 211. https://doi.org/10.1016/0009-2614(93)80095-7
  18. Aoki, K.; Ikuta, S.; Nomura, O. J. Chem. Phys. 1993, 98, 7661. https://doi.org/10.1063/1.464680
  19. Rice, J. E.; Schaefer, H. F. J. Chem. Phys. 1987, 86, 7051. https://doi.org/10.1063/1.452354
  20. Seidl, E. T.; Schaefer, H. F. J. Chem. Phys. 1992, 96, 4449. https://doi.org/10.1063/1.462836
  21. Kim, K.; Lee, B.; Lee, S. Chem. Phys. Lett. 1998, 297, 65. https://doi.org/10.1016/S0009-2614(98)00971-3
  22. Goldberg, N.; Fiedler, A.; Schwarz, H. J. Phys. Chem. 1995, 99, 15327.
  23. Lee, B. Lee Chem. Phys. Lett. 1998, 286, 171, 32
  24. Lee, S. Chem. Phys. Lett. 1997, 268, 69. https://doi.org/10.1016/S0009-2614(97)00167-X
  25. Park, S.-W.; Park, K.-T.; Lee, S.; Kim, B. Chem. Phys. Lett. 2000, 326, 530. https://doi.org/10.1016/S0009-2614(00)00800-9
  26. Lee, S. J. Phys. Chem. 1996, 100, 13959. https://doi.org/10.1021/jp961080p
  27. Lee, S. J. Mol. Struct. (Theochem) 1998, 427, 267. https://doi.org/10.1016/S0166-1280(97)00337-0
  28. Lee, S.-C.; Park, S.-W.; Lee, S. Bull. Korean Chem. Soc. 2000, 21, 734
  29. Park, K.; Lee, S.; Lee, Y. Bull. Korean Chem. Soc. 1999, 20, 809
  30. Lee, B.; Lee, S. Bull. Korean Chem. Soc. 1996, 17, 767.
  31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94; Gaussian, Inc.: Pittsburgh, PA, 1995.氠潦⁍慲步瑩湧⁒敳敡牣栀䩯畲湡氠潦⁍潬散畬慲⁃慴慬祳楳⁁䩯畲湡氠潦⁎畣汥慲⁍慴敲楡汳䩯畲湡氠潦⁐敲楯摯湴潬潧礀䩯畲湡氠潦⁐潬祭敲⁓捩敮捥⁐慲琠䩯畲湡氠潦⁓潬楤⁓瑡瑥⁃桥浩獴特䩯畲湡氠潦⁔桥⁅汥捴牯捨敭楣慬⁓䩯畲湡氠潦⁗楮搠䕮杩湥敲楮朠慮搠䩯畲湡氠潦⁴桥⁁浥物捡渠䍨敭楣慬䩯畲湡氠潦⁴桥⁁浥物捡渠噥瑥物湡䩯畲湡氠潦⁴桥⁋潲敡渠䥮摵獴物慬䩯畲湡氠潦⁴桥⁋潲敡渠坯潤⁓捩敮䩯畲湡氠潦⁴桥潲敡渠獯捩整礠潦䭩摮敹⁉湴敲湡瑩潮慬䭯牥愠䨮⁆潯摳敲癩捥⁍慮慧敭敮琀䭯牥慮⁊⁄敲浡瑯氀䭯牥慮⁊⁎畴爀䭯牥慮⁊⸠䑥牭慴潬⸀䭯牥慮⁊⸠䙯潤⁡湤⁎畴爮䭯牥慮⁊⸠潦⁍慴敲楡汳⁒敳敡牣栀䭯牥慮⁊潵牮慬映䙯潤⁓捩敮捥⁡䭯牥慮⁊潵牮慬映䱩晥⁓捩敮捥䭯牥慮潵牮慬映慰灬楥搠敮瑯浯䱡湤眮⁆潲獣桵湧Ⰰ䱩浮潬⸠佣敡湯杲⸀䵡捲潭潬⸠剥献䵡湡来浥湴⁓捩敮捥䵡瑥物慬猠䕶慬畡瑩潮䵥捨慮楣慬⁓祳瑥浳⁡湤⁓楧湡氠偲䵥瑡扯汩獭䵩捲潰慬敯湴潬潧礀䵯氮⁇敮⸠䝥湥琮䵯汥捵污爠扩潬潧礠慮搠敶潬畴楯渮䵵瑡瑩潮⁒敳敡牣栀义䍅乡瑵牥乡瑵牥⁒敶楥睳⁉浭畮潬潧礀乥畲潬潧礀
  32. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  33. Lee, C.; Yang, W.; Parr, R. P. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  34. Saito, S.; Endo, Y.; Hirota, E. J. Chem. Phys. 1984, 80, 1427. https://doi.org/10.1063/1.446879
  35. Brown, F. X.; Saito, S.; Yamamoto, S. J. Mol. Spectrosc. 1990, 143, 4256.
  36. Morter, C. L.; Farbat, S. K.; Curl, R. F. Chem. Phys. Lett. 1993, 207, 153. https://doi.org/10.1016/0009-2614(93)87007-P
  37. Sun, F.; Kosterev, A.; Scott, G.; Litosh, V.; Curl, R. F. J. Chem. Phys. 1998, 109, 8851 https://doi.org/10.1063/1.477556
  38. Hung, P. Y.; Sun, F.; Hunt, N. T.; Burns, L. A.; Curl, R. F. J. Chem. Phys. 2001, 115, 9331. https://doi.org/10.1063/1.1413981
  39. Malmqvist, P.-A.; Lindh, R.; Roos, B. O.; Ross, S. Theor. Chim. Acta 1988, 73, 155. https://doi.org/10.1007/BF00528202
  40. Kawaguchi, K.; Ohishi, M.; Ishikawa, S.-I.; Kaifu, N. Astrophys. J. 1992, 386, L51. https://doi.org/10.1086/186290
  41. Ding, Y.-H.; Li, Z.-S.; Huang, X.-R.; Sun, C.-C. J. Chem. Phys. 2000, 113, 1745. https://doi.org/10.1063/1.481977
  42. Ding, Y.-H.; Huang, X.-R.; Li, Z.-S.; Sun, C.-C. J. Chem. Phys. 1998, 108, 2024. https://doi.org/10.1063/1.475581
  43. Winnewisser, G. J. Mol. Struct. 1997, 408, 1. https://doi.org/10.1016/S0022-2860(96)09709-8

Cited by

  1. Theoretical insights into the reaction mechanisms between azacyclopropenylidene and R-H (R = F, OH, NH2, CH3): An alternative approach to the formation of ketenimine vol.14, pp.4, 2015, https://doi.org/10.3233/MGC-150178
  2. Structures and Spectroscopic Properties of Dicyanoacetylene and Isomers: Density Functional Theory Study vol.48, pp.6, 2002, https://doi.org/10.5012/jkcs.2004.48.6.568
  3. Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds vol.12, pp.12, 2002, https://doi.org/10.1088/1674-4527/12/12/003
  4. Reaction mechanisms and kinetics of the iminovinylidene radical with NO: ab initio study. vol.140, pp.20, 2002, https://doi.org/10.1063/1.4876015