DOI QR코드

DOI QR Code

A Study on the Reduction of Nitric Oxide Molecule (NO) to Nitroxyl Anion (NO-) by Vibrational Energy

진동에너지에 의한 산화질소 분자(NO)의 음이온(NO-)으로의 환원반응에 관한 연구

  • Published : 2002.02.20

Abstract

It is shown that one-electron reduction of nitric oxide (NO) to nitroxyl anion $(NO^-)$ can be accelerated by vibrational energy. Potential energy surfaces of NO and $NO^-$ reveal that the vertical transition between them has favorable energetics for vibrationally excited molecule. Also, Franck-Condon factors between NO and $NO^-$ vibrational wave functions are calculated. It shows that the number of open channels increases with increased vibrational energy. These results mean that we can control the rate of reduction of NO to $NO^-$ by radiating an appropriate light.

산화질소 분자(NO)가 전자 한 개를 받아 산화질소 음이온$(NO^-)$으로 환원되는 반응의 정도가 진동에너지에 따라 크게 달라질 수 있음을 제시하였다. NO와 $NO^-$의 포텐샬에너지 표면은 진동에너지가 많아짐에 따라 NO 분자가 전자를 받아 $NO^-$음이온으로 바뀔수 있는 에너지적 측면을 가짐을 보여준다. 또한, 진동 파동함수간의 Franck-Condon 인자를 계산하였다. 진동에너지가 많아지면 NO에서 $NO^-$로 바뀔 경로가 더 많이 증가함을 보인다. 이 결과는 NO 분자에게 적절한 빛을 조사시킴으로 $NO^-$이온으로의 환원반응속도를 조절할 수 있음을 의미한다.

Keywords

References

  1. http://www.nobel.se/medicine/laureates/1998/index.html.
  2. Kim, W.-K.; Choi, Y.-B.; Rayudu, P. V.; Das, P.; Asaad,W.; Arnelle, D. R.; Stamler, J. S.; Lipton, S. A. Neuron1999, 24, 461. https://doi.org/10.1016/S0896-6273(00)80859-4
  3. Cho, S.-W. Bull. Korean Chem. Soc. 2001, 22, 795.
  4. Huang, Y.; Rettner, C. T.; Auerbach, D. J.; Wodtke, A. M. Science 2000, 290, 111. https://doi.org/10.1126/science.290.5489.111
  5. Huang, Y.; Wodtke, A. M.; Hou, H.; Rettner, C. T.;Auerbach, D. J. Phys. Rev. Lett. 2000, 84, 2985. https://doi.org/10.1103/PhysRevLett.84.2985
  6. Rettner, C. T.; Fabre, F.; Kimman, J.; Auerbach, D. J.Phys. Rev. Lett. 1985, 55, 1904. https://doi.org/10.1103/PhysRevLett.55.1904
  7. McCarthy, M. C.; Allington, J. W. R.; Griffith, K. S.Chem. Phys. Lett. 1998, 289, 156. https://doi.org/10.1016/S0009-2614(98)00408-4
  8. Hulburt, H. M.; Hirschfelder, J. O. J. Chem. Phys. 1941,9, 61. https://doi.org/10.1063/1.1750827
  9. Neumark, D. M.; Lykke, K. R.; Andersen, T.; Lineberger,W. C. Phys. Rev. A 1985, 32, 1890. https://doi.org/10.1103/PhysRevA.32.1890
  10. Travers, M. J.; Cowles, D. C.; Ellison, G. B. Chem. Phys. Lett. 1989, 164, 449. https://doi.org/10.1016/0009-2614(89)85237-6
  11. Merzbacher, E. Quantum Mechanics, 2nd ed.; Wiley:New York, 1970; pp 475-481.
  12. Schiff, L. I. Quantum Mechanics, 3rd ed.; McGraw-Hill: New York, 1968; pp 283-285.
  13. Gadzuk, J. W.; Metiu, H. Phys. Rev. B 1980, 22, 2603. https://doi.org/10.1103/PhysRevB.22.2603
  14. Metiu, H.; Gadzuk, J. W. J. Chem. Phys. 1981, 74, 2641. https://doi.org/10.1063/1.441335
  15. Le Roy, R. J. LEVEL; http://theochem.uwaterloo.ca/~leroy/level.
  16. Levine, I. N. Quantum Chemistry, 5th ed.; Prentice Hall: 2000; p 78.
  17. Numerov, B. Publs. Observatoire Central Astrophys. Russ. 1933, 2, 188.
  18. Cooley, J. W. Math. Computation 1961, 15, 363. https://doi.org/10.2307/2003025
  19. Cashion, J. K. J. Chem. Phys. 1963, 39, 1872. https://doi.org/10.1063/1.1734545
  20. Zare, R. N. J. Chem. Phys. 1964, 40, 1934. https://doi.org/10.1063/1.1725425
  21. Johnson, B. R. J. Chem. Phys. 1977, 67, 4086. https://doi.org/10.1063/1.435384

Cited by

  1. Vibrational relaxation of NO on Au(111) via electron-hole pair generation vol.125, pp.15, 2006, https://doi.org/10.1063/1.2357740
  2. Vibrationally promoted electron emission from low work-function metal surfaces vol.124, pp.6, 2006, https://doi.org/10.1063/1.2166360