DOI QR코드

DOI QR Code

Enhanced UV-Visible Absorbance Detection in Capillary Electrophoresis Using Modified T-Shaped Post-Column Flow Cell

  • Lim, Kwan-Seop (National Research Laboratory for Advanced Biotechnology and Biomedical Microinstrumentation, Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Kim, Su-Hyeon (LG Electronic Institute of Technology) ;
  • Hahn, Jong-Hoon (National Research Laboratory for Advanced Biotechnology and Biomedical Microinstrumentation, Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Published : 2002.02.20

Abstract

The construction of the T-shaped post-column flow cell has been changed to enhance the practicability as a UV-visible absorbance detector for capillary electrophoresis. In this new design, a rectangular cube-shaped inner structure is employed, which completely fits the outer rectangular tubing. This arrangement has greatly facilitated the fabrication of the T-cells. In addition, the volume for the auxiliary flow has been dramatically reduced down to 300 ${\mu}L$, and its volume flow rate is optimized at 4.2 ${\mu}L$/min. The short optical path length in the sheath flows (500 ${\mu}m$ on each side) minimizes background absorption, and thus enhances its performance in low-UV wavelengths. We have optimized the auxiliary flow rate at 50 ${\mu}m$/s, so that migration times are insensitive to the flow rate. This optimization has improved repeatabilities in migration times and peak heights. A double-beam detection scheme using a pair of photodiodes is employed to increase the signal-to-noise ratio.

Keywords

References

  1. Swinney, K.; Bornhop, D. J. Electrophoresis 2000, 21, 1239 https://doi.org/10.1002/(SICI)1522-2683(20000401)21:7<1239::AID-ELPS1239>3.0.CO;2-6
  2. Mainka, A.; Bachmann, K. J. Chromatogr. A 1997, 767, 241 https://doi.org/10.1016/S0021-9673(97)00012-5
  3. Li, C.; Martin, L. M. Anal. Biochem. 1998, 263, 72 https://doi.org/10.1006/abio.1998.2791
  4. Wang, T.; Aiken, J. H.; Huie, C. W.; Hartwick, R. A. Anal. Chem. 1991, 63, 1372 https://doi.org/10.1021/ac00014a007
  5. Vorndran, A.; Oefner, P.; Scherz, H.; Bonn, G. Chromatographia 1992, 33, 163 https://doi.org/10.1007/BF02275899
  6. Foret, F.; Fanali, S.; Nardi, A.; Bocek, P. Electrophoresis 1990, 11, https://doi.org/10.1002/elps.1150110919
  7. Chen, M.; Waldron, K. C.; Zhao, Y.; Dovichi, N. J. Electrophoresis 1994, 15, https://doi.org/10.1002/elps.11501501196
  8. Gassmann, E.; Kuo, J. E.; Zare, R. N. Science 1985, 230, 813 https://doi.org/10.1126/science.230.4727.813
  9. Chen, D. Y.; Adelhelm, K.; Cheng, X. L.; Dovichi, N. J. Analyst 1994, 119, 349 https://doi.org/10.1039/an9941900349
  10. Timperman, A. T.; Khatib, K.; Sweedler, J. V. Anal. Chem. 1995, 67, 139 https://doi.org/10.1021/ac00097a022
  11. Kar, S.; Dasgupta, P. K.; Liu, H.; Hwang, H. Anal. Chem. 1994, 66, 2537 https://doi.org/10.1021/ac00087a019
  12. Kuhr, W. G.; Yeung, E. S. Anal. Chem. 1988, 60, 2642 https://doi.org/10.1021/ac00174a021
  13. Chang, H.-T.; Yeung, E. S. Anal. Chem. 1995, 67, 1079 https://doi.org/10.1021/ac00102a010
  14. Craig, D. B.; Arriaga, E.; Wong, J. C. Y.; Lu, H.; Dovichi, N. J. Anal. Chem. 1998, 70, 39A https://doi.org/10.1021/ac9817164
  15. Xue, Q.; Yeung, E. S. Nature 1995, 373, 681 https://doi.org/10.1038/373681a0
  16. Bornhop, D. J.; Dovichi, N. J. Anal. Chem. 1986, 58, 504 https://doi.org/10.1021/ac00293a057
  17. Deng, Y.; Li, B. Appl. Opt. 1998, 37, 998 https://doi.org/10.1364/AO.37.000998
  18. Kitagishi, K.; Sato, Y. Electrophoresis 2001, 22, 3395 https://doi.org/10.1002/1522-2683(200109)22:16<3395::AID-ELPS3395>3.0.CO;2-G
  19. Hu, T.; Zuo, H.; Riley, C. M.; Stobaugh, J. F.; Lunte, S. M. J. Chromatogr. A 1995, 716, 381 https://doi.org/10.1016/0021-9673(95)00604-L
  20. Taylor, J. A.; Yeung, E. S. J. Chromatogr. 1991, 550, 831 https://doi.org/10.1016/S0021-9673(01)88586-1
  21. Grant, I. H.; Steuer, W. J. Microcol. Sep. 1990, 2, 74 https://doi.org/10.1002/mcs.1220020206
  22. Poppe, H. Anal. Chem. Acta 1980, 114, 59 https://doi.org/10.1016/S0003-2670(01)84279-3
  23. Tsuda, T.; Sweedler, J. V.; Zare, R. N. Anal. Chem. 1990, 62, 2149 https://doi.org/10.1021/ac00218a020
  24. Xi, X.; Yeung, E. S. Appl. Spectrosc. 1991, 45, 1199 https://doi.org/10.1366/0003702914335931
  25. Chervet, J. P.; van Soest, R. E. J.; Ursem, M. J. Chromatogr. 1991, 543, 439 https://doi.org/10.1016/S0021-9673(01)95795-4
  26. Moring, S. E.; Reel, R. T.; van Soest, R. E. J. Anal. Chem. 1993, 65, 3454 https://doi.org/10.1021/ac00071a020
  27. Kim, S.; Kim, W.; Hahn, J. H. J. Chromatogr. A 1994, 680, 109 https://doi.org/10.1016/0021-9673(94)80058-8
  28. Hahn, J. H.; Kim, S.; Kim, W. Korea Patent 132100
  29. Handbook of Capillary Electrophoresis, 2nd ed.; Landers, J. P., Ed.; CRC Press: New York, U.S.A., 1997; p 392
  30. Heiger, D. N. High Performance Capillary Electrophoresis-An Introduction; Hewlett-Packard: Waldbronn, 1992; p 95
  31. Handbook of Capillary Electrophoresis; Landers, J. P., Ed.; CRC Press: New York, U.S.A., 1994; p 268

Cited by

  1. Analysis of Health-related Microbes by Capillary Electrophoresis vol.24, pp.8, 2002, https://doi.org/10.5012/bkcs.2003.24.8.1203