References
- Dixon, D. A.; Smart, B. E.; Fukunaga, T. Chem. Phys. Lett. 1986, 125, 447. https://doi.org/10.1016/0009-2614(86)87076-2
- Wiberg, K. B.; Murcko, M. A.; Laidig, K. E.; MacDougall, P. J. J. Phys. Chem. 1990, 94, 6956. https://doi.org/10.1021/j100381a008
- Allinger, N. L.; Grev, R. S.; Yates, B. F.; Schaefer III, H. F. J. Am. Chem. Soc. 1990, 112, 114. https://doi.org/10.1021/ja00157a018
- Jaffe, R. L.; Smith, G. D.; Yoon, D. Y. J. Phys. Chem. 1993, 97, 12745. https://doi.org/10.1021/j100151a020
- Chen, Y.; Paddison, S. J.; Tschuikow-Roux, E. J. Phys. Chem. 1994, 98, 1100. https://doi.org/10.1021/j100055a010
- Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
- Van Diujneveldt, F. B.; Van Diujneveldt-van de Rijdt, J. G. C. M.; van Lenthe, J. H. Chem. Rev. 1994, 94, 1873. https://doi.org/10.1021/cr00031a007
- Xantheas, S. S. J. Chem. Phys. 1996, 104, 8821. https://doi.org/10.1063/1.471605
- Mayer, I.; Surjan, P. R. Chem. Phys. Lett. 1992, 191, 497. https://doi.org/10.1016/0009-2614(92)85415-7
- Davison, E. R.; Chakravorty, S. J. Chem. Phys. Lett. 1994, 217, 48. https://doi.org/10.1016/0009-2614(93)E1356-L
- Gutowski, M., Szczesniak, M. M.; Chalasinski, G. Chem. Phys. Lett. 1995, 241, 140. https://doi.org/10.1016/0009-2614(95)00611-7
- Davison, E. R.; Chakravorty, S. J. Chem. Phys. Lett. 1995, 241, 146. https://doi.org/10.1016/0009-2614(95)00612-8
- Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P.; Cui, Y.; Morokuma, Q.; Salvador, K. P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D.; Keith, J. T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98 (Revision A.1x); Gaussian, Inc.: Pittsburgh, PA, 2001.
- Dixon, D. A.; Smart, B. E. J. Phys. Chem. 1998, 92, 2729. https://doi.org/10.1021/j100321a007
- Tsuzuki, S.; Uchimaru, T.; Tanabe, K; Hirano, T. J. Phys. Chem. 1993, 97, 1346. https://doi.org/10.1021/j100109a016
Cited by
- Enthalpy difference between conformations of normal alkanes: effects of basis set and chain length on intramolecular basis set superposition error vol.109, pp.6, 2011, https://doi.org/10.1080/00268976.2011.558858
- ′-diphenylurea Conformations vol.118, pp.28, 2014, https://doi.org/10.1021/jp503539m
- Hydroxyl-Functionalized 1-(2-Hydroxyethyl)-3-methyl Imidazolium Ionic Liquids: Thermodynamic and Structural Properties using Molecular Dynamics Simulations and ab Initio Calculations vol.118, pp.49, 2014, https://doi.org/10.1021/jp5083714
- Solutions vol.120, pp.35, 2016, https://doi.org/10.1021/acs.jpcc.6b07733
- Intramolecular BSSE and dispersion affect the structure of a dipeptide conformer pp.1362-3028, 2017, https://doi.org/10.1080/00268976.2017.1418029
- Evaluation of the intramolecular basis set superposition error in the calculations of larger molecules: [n]helicenes and Phe-Gly-Phe tripeptide vol.29, pp.6, 2008, https://doi.org/10.1002/jcc.20841
- The Rearrangement Reaction of CH3SNO2 to CH3SONO Studied by a Density Functional Theory Method vol.25, pp.11, 2002, https://doi.org/10.5012/bkcs.2004.25.11.1657
- The &agr;-Effect in Reactions of sp-Hybridized Carbon Atom: Michael-Type Reactions of 1-Aryl-2-propyn-1-ones with Primary Amines vol.70, pp.19, 2002, https://doi.org/10.1021/jo050624t