DOI QR코드

DOI QR Code

Correlation of Rates of Solvolysis of Phenyl Chlorodithioformate

  • An, Sun-Kyoung (Department of Chemical Education, Gyeongsang National University) ;
  • Yang, Jin-Soon (Department of Chemical Education, Gyeongsang National University) ;
  • Cho, Jun-Mi (Department of Chemical Education, Gyeongsang National University) ;
  • Yang, Ki-yull (Department of Chemical Education, Gyeongsang National University) ;
  • Lee, Jong-Pal (Department of Chemistry, Dong-A University) ;
  • Bentley, T.W. (Department of Chemistry, University of Wales) ;
  • Lee, Ik-choon (Department of Chemistry, Inha University) ;
  • Koo, In-Sun (Department of Chemical Education, Gyeongsang National University)
  • Published : 2002.10.20

Abstract

Solvolytic rate constants at 25 $^{\circ}C$ are reported for solvolysis of chlorodithioformate (1) in binary mixtures of water with acetone, ethanol, methanol, methanol-d, 50%methanol-d/50%D2O, and 2,2,2-trifluroethanol (TFE), and also in TFE-ethanol mixtures. The Grunwald-Winstein plot shows that the three aqueous mixtures exhibit dispersions into separate line. The correlation is improved only slightly by additional parameters NT for solvent nucleophilicity and/or I for aromatic ring parameter. Rate ratios in solvents of the same $Y_cl$ value, having different nucleophilicity provide measures of the minimum extent of nucleophilic solvent assistance, and the value of 3.35 for $[$k_{40EW}$/$k_97TFE$]_Y$ (EW = ethanol-water), is consistent with an essentially SN1 reaction mechanism. This study has shown that the magnitude of l, m and h values associated with a change of solvent composition is able to predict the SN1 reaction mechanism. log(k/$k_o$) = mY + lN + hI

Keywords

References

  1. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1991, 175.
  2. Bentley, T. W.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1989, 1385.
  3. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  4. Bentley, T. W.; Harris, H. C.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1988, 783.
  5. Bentley, T. W.; Harris, H. C. J. Chem. Soc., Perkin Trans. 2 1986, 619.
  6. Koo, I. S.; An, S. K.; Yang, K.; Koh, H. J.; Choi, M. H.; Lee, I. Bull. Korean Chem. Soc. 2001, 22, 842.
  7. Bentley, T. W.; Bowen, C. T.; Morten, D. H.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 5466. https://doi.org/10.1021/ja00408a031
  8. Winstein, S.; Grunwald, E. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  9. Bentley, T. W.; Dau-Schmidt, J.-P.; Llewellyn, G.; Mayr, H. J. Org. Chem. 1992, 57, 2387. https://doi.org/10.1021/jo00034a035
  10. Winstein, S.; Fainberg, A.; Grunwald, E. J. Am. Chem. Soc. 1957, 79, 4146. https://doi.org/10.1021/ja01572a046
  11. Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1957, 79, 1957.
  12. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  13. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  14. Kevill, D. N.; D'Souza, M. J. Chem. Res(s). 1993, 174.
  15. Kevill, D. N. In Advances in Quantitative Structure-Property Relatonships; Chorton, M., Ed.; JAI Press: Greenwich, CT, 1966; Vol. 1, p 81.
  16. Kevill, D. N.; Ismail, N. HJ.; D'Souza, M. J. J. Org. Chem. 1994, 59, 6303. https://doi.org/10.1021/jo00100a036
  17. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1995, 973.
  18. Kevill, D. N.; Anderson, S. W. J. Am. Chem. Soc. 1986, 108, 1597.
  19. Kevill, D. N.; Bond, M. W.; D'Souza, M. J. J. Org. Chem. 1997, 62, 7869. https://doi.org/10.1021/jo970657b
  20. Sneen, R. A.; Felt, G. R.; Dickason, W. C. J. Am. Chem. Soc. 1973, 95, 638. https://doi.org/10.1021/ja00783a083
  21. Friedberger, M. P.; Thornton, E. R. J. Am. Chem. Soc. 1976, 98, 2861. https://doi.org/10.1021/ja00426a031
  22. Queen, A.; Nour, T. A.; Paddon-Raio, M. N.; Preston, K. Can. J. Chem. 1970, 48, 522. https://doi.org/10.1139/v70-087
  23. Queen, A.; Nour, T. A.; Bock, E. Can. J. Chem. 1969, 47, 343. https://doi.org/10.1139/v69-047
  24. Koo, I. S.; Yang, K.; Kang, D. H.; Park, H. J.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 577.
  25. Koo, I. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 968.
  26. Bentley, T. W.; Koo, I. S.; Norman, S. J. Org. Chem. 1991, 56, 1604. https://doi.org/10.1021/jo00004a048
  27. Liu, K.-T.; Chen, H.-I. J. Chem. Soc., Perkin Trans. 2 2000, 893.
  28. Koo, I. S.; An, S. K.; Yang, K.; Lee, I.; Bentley, T. W. submitted to J. Phy. Org. Chem. for the publication as title of “Correlation of the Rates of Solvolyses of Cinnamyl Chloride.” 2002.
  29. Liu, K.-T.; Duann, Y.-F.; Hou, S.-J. J. Chem. Soc., Perkin Trans. 2 1998, 2181.
  30. Bentley, T. W.; Llewllyn, G.; Ryu, Z. H. J. Org. Chem. 1998, 63, 4654. https://doi.org/10.1021/jo980109d
  31. Koh, H. J.; Lee, H. C.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 1996, 17, 712. https://doi.org/10.1007/BF02699122
  32. Kevil, D. N.; D'Souza, M. J. Can. J. Chem. 1999, 77, 1118. https://doi.org/10.1139/cjc-77-5-6-1118
  33. Bentley, T. W.; Carter, G. E. J. Org. Chem. 1983, 48, 579. https://doi.org/10.1021/jo00152a033
  34. Koo, I. S.; Yang, K.; Lee, I.; Bentley, T. W. J. Chem. Soc., Perkin Trans. 2 1998, 1179.
  35. Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724. https://doi.org/10.1021/jo00239a004
  36. Bentley, T. W.; Jones, R. O. J. Chem. Soc., Perkin Trans. 2 1993, 2351.
  37. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1994, 753.
  38. Jones, R. O. M. Phil. Thesis; University of Wales: 1991.
  39. Yang, K.; Koo, I. S.; Lee, I.; Jo, D-S. Bull. Korean Chem. Soc. 1994, 15, 280.

Cited by

  1. Correlations of the Specific Rates of Solvolysis of Aromatic Carbamoyl Chlorides, Chloroformates, Chlorothionoformates, and Chlorodithioformates Revisited vol.8, pp.4, 2007, https://doi.org/10.3390/i8040346
  2. Grunwald-Winstein Analysis - Isopropyl Chloroformate Solvolysis Revisited vol.10, pp.3, 2009, https://doi.org/10.3390/ijms10030862
  3. Use of Empirical Correlations to Determine Solvent Effects in the Solvolysis of S-Methyl Chlorothioformate vol.11, pp.5, 2010, https://doi.org/10.3390/ijms11052253
  4. Analysis of the Nucleophilic Solvation Effects in Isopropyl Chlorothioformate Solvolysis vol.11, pp.7, 2010, https://doi.org/10.3390/ijms11072597
  5. Detailed analysis for the solvolysis of isopropenyl chloroformate vol.2, pp.2, 2011, https://doi.org/10.5155/eurjchem.2.2.130-135.405
  6. -Chlorophenyl Chlorothionoformate Esters vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/248534
  7. Influence of Sulfur for Oxygen Substitution in the Solvolytic Reactions of Chloroformate Esters and Related Compounds vol.15, pp.10, 2014, https://doi.org/10.3390/ijms151018310
  8. The leaving group dependence in the rates of solvolysis of 1,2-diphenylethyl system pp.10991395, 2010, https://doi.org/10.1002/poc.1662
  9. A Kinetic Study of the Solvolyses of Methyl and Ethyl Chloroglyoxalates vol.70, pp.22, 2002, https://doi.org/10.1021/jo050998m
  10. Sixty Years of the Grunwald-Winstein Equation: Development and Recent Applications vol.2008, pp.2, 2008, https://doi.org/10.3184/030823408x293189
  11. Correlation of the Rates of Solvolysis of 4-Morpholinecarbonyl Chloride Using the Extended Grunwald-Winstein Equation vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1963
  12. Kinetic evaluation of the solvolysis of isobutyl chloro- and chlorothioformate esters vol.7, pp.None, 2002, https://doi.org/10.3762/bjoc.7.62
  13. Correlation of the Rates of Solvolysis of 1-Piperidincarbonyl Chloride Using the Extended Grunwald-Winstein Equation vol.32, pp.11, 2002, https://doi.org/10.5012/bkcs.2011.32.11.3941
  14. Correlation of the Rates of Solvolysis of Phenyl Fluorothionoformate vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1268