DOI QR코드

DOI QR Code

Photoaddition Reactions of Silyl Ketene Acetals with Aromatic Carbonyl Compounds: A New Procedure for β-Hydroxyester Synthesis

  • Yoon, Ung-Chan (Department of Chemistry and Chemistry Institute for Functional Materials,Pusan National University) ;
  • Kim, Moon-Jung (Department of Chemistry and Chemistry Institute for Functional Materials,Pusan National University) ;
  • Moon, Jae-Joon (Department of Chemistry and Chemistry Institute for Functional Materials,Pusan National University) ;
  • Oh, Sun-Wha (Department of Chemistry and Chemistry Institute for Functional Materials,Pusan National University) ;
  • Kim, Hyun-Jin (Department of Chemistry and Chemistry Institute for Functional Materials,Pusan National University) ;
  • Mariano, Patrick S. (Department of Chemistry, University of New Mexico)
  • Published : 2002.09.20

Abstract

Photochemical reactions of aromatic carbonyl compounds with silyl ketene acetals have been explored. Irradiation of acetonitrile or benzene solutions containing aryl aldehydes or ketones in the presence of silyl ketene acetals is observed to promo te formation of ${\beta}-hydroxyester$, 2,2-dioxyoxetane and 3,3-dioxyoxetane products. The ratios of these photoproducts, which arise by competitive single electron transfer (SET) and classical Paterno-Buchi mechanistic pathways, is found to be dependent on the degree of methyl-substitution on the vinyl moieties of the ketene acetals in a manner which reflects expected alkyl substituent effects on the oxidation potentials of these electron rich donors. An analysis of the product distribution arising by irradiation of a solution containing butyrophenone (6) and the silyl ketene acetal 9, derived from methyl isobutyrate, provides an estimate of the rate constants for the competitive Norrish type Ⅱ, SET and Paterno-Buchi processes occuring. Finally, sequences involving silyl ketene acetal-aryl aldehyde or ketone photoaddition followed by 2,2-dioxyoxetane hydrolysis represent useful procedures for Claisen-condensation type, ${\beta}-hydroxyester$ synthesis.

Keywords

References

  1. Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. 1992, 25, 233. https://doi.org/10.1021/ar00017a005
  2. Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. 2001, 34, 523. https://doi.org/10.1021/ar010004o
  3. Zhang, X. M.; Yeh, S. R.; Hong, S.; Freccero, M.; Albini, A.; Falvey, D. F.; Mariano, P. S. J. Am. Chem. Soc. 1994, 116, 4211. https://doi.org/10.1021/ja00089a010
  4. Su, Z.; Falvey, D. F.; Yoon, U. C.; Oh, S. W.; Mariano, P. S. J. Am. Chem. Soc. 1998, 120, 10676. https://doi.org/10.1021/ja981541f
  5. Brumfield, M. A.; Quillen, S. L.; Yoon, U. C.; Mariano, P. S. J. Am. Chem. Soc. 1984, 106, 6855. https://doi.org/10.1021/ja00334a072
  6. Ohga, K.; Yoon, U. C.; Mariano, P. S. J. Org. Chem. 1984, 49, 213. https://doi.org/10.1021/jo00176a001
  7. Brumfield, M. A.; Yoon, U. C.; Hasegawa, E.; Mariano, P. S. J. Org. Chem. 1988, 53, 5435. https://doi.org/10.1021/jo00258a007
  8. Yoon, Y. C.; Kim, J. U.; Hasegawa, E.; Mariano, P. S. J. Am. Chem. Soc. 1987, 109, 4421. https://doi.org/10.1021/ja00248a063
  9. Hasegawa, E.; Wu, X.; Mariano, P. S.; Yoon, U. C.; Kim, J. U. J. Am. Chem. Soc. 1988, 110, 8099. https://doi.org/10.1021/ja00232a023
  10. Yoon, U. C.; Kim, Y. C.; Choi, J. J.; Kim, D. U.; Mariano, P. S.; Cho, I. S.; Jeon, Y. T. J. Org. Chem. 1992, 57, 1422. https://doi.org/10.1021/jo00031a020
  11. Yoon, U. C.; Kim, H. J.; Mariano, P. S. Heterocycles 1989, 29, 1041 https://doi.org/10.3987/COM-89-4762
  12. Yoon, U. C.; Cho, S. J.; Oh, J. H.; Lee, J. G.; Kang, K. T.; Mariano, P. S. Bull. Korean Chem. Soc. 1991, 12, 241.
  13. Yoon, U. C.; Oh, J. H.; Lee, S. J.; Kim, D. U.; Lee, J. G.; Kang, K. T.; Mariano, P. S. Bull. Korean Chem. Soc. 1992, 13, 166.
  14. Yoon, U. C.; Lee, S. J.; Lee, K. J.; Cho, S. J.; Lee, C. W.; Mariano, P. S. Bull. Korean Chem. Soc. 1994, 15(2), 154.
  15. Yoon, U. C.; Oh, S. W.; Lee, C. W. Heterocycles 1995, 41(2), 2665. https://doi.org/10.3987/COM-95-7029
  16. Yoon, U. C.; Kim, J. W.; Ryu, J. Y.; Cho, S. J.; Oh, S. W.; Mariano, P. S.J. Photochem. Photobiol. A 1997, 106, 145. https://doi.org/10.1016/S1010-6030(97)00052-X
  17. Yoon, U. C.; Oh, S. W.; Lee, J. H.; Park, J. H.; Kang, K. T.; Mariano, P. S. J. Org. Chem. 2001, 66, 939. https://doi.org/10.1021/jo001457u
  18. Arnold, D. R. Advances in Photochemistry; Noyes, W. A.; Hammond; Pitts, J. N., Eds.; Interscience Publishers: New York, 1968; Vol. 6.
  19. Jones, G. Organic Photochemistry; Padwa, A., Ed.; Marcel Dekker: New York, 1981; Vol. 5, Chapter 1.
  20. Results reported in this paper were taken from the master work of M. J. L. at the Pusan National University (Feburary 1992) and were presented at the 16th IUPAC Symposium on Photochemistry, July 1996 (Abstract pp. 600), Helsink, Finland, the 1st Korean- French Seminar on Organic Chemistry, November 1995 (Abstract pp.190), Seoul, Korea and Japan-Korea Seminar on Synthetic Organic Chemistry for Young Chemists, November 1995 (Abstract pp. 7), Kagoshima, Japan.
  21. Abe, M.; Shirodai, Y.; Nojima, M. J. Chem. Soc. Perkin Trans. 1 1998, 3253.
  22. Fukuzumi, S.; Fujita, M.; Otera, J. J. Org. Chem. 1993, 58, 5405. https://doi.org/10.1021/jo00072a023
  23. Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochemistry, 2nd Ed.; Marcel Dekker: New York, 1993.
  24. Renaud, R. N.; Berube, D.; Stephens, C. J. Can. J. Chem. 1983, 61, 1379. https://doi.org/10.1139/v83-241
  25. Mann, C. K.; Barnes, K. K. Electrochemical Reactions in Nonaquous Systems; Marcel Dekker: New York, 1970; p 184.
  26. Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259.
  27. Wagner, P. J. Acc. Chem. Res. 1971, 4, 169.
  28. Wager, P. J.; Hammond, G. S. J. Am. Chem. Soc. 1966, 88, 1245. https://doi.org/10.1021/ja00958a030
  29. Acc.Chem.Res v.4 Wagner,P.J
  30. Am. Chem. Soc v.88 Wager,P.J.;Hammond,G.S.J https://doi.org/10.1021/ja00958a030

Cited by

  1. Photoaddition Reactions of 1,2-Diketone vol.1, pp.1, 2012, https://doi.org/10.5857/RCP.2012.1.1.017
  2. Photoaddition Reactions of Acetylpyridines with Silyl Ketene Acetals: SET vs [2 + 2]-Cycloaddition Pathways vol.77, pp.22, 2012, https://doi.org/10.1021/jo301961n
  3. Oxetane Synthesis through the Paternò-Büchi Reaction vol.18, pp.9, 2013, https://doi.org/10.3390/molecules180911384
  4. Photochemical reactions of 1,2-diketones with silyl enol ethers vol.41, pp.1, 2015, https://doi.org/10.1007/s11164-013-1203-3
  5. Photoaddition Reactions of Silyl Ketene Acetals with Aromatic Carbonyl Compounds: A New Procedure for β-Hydroxyester Synthesis. vol.34, pp.9, 2002, https://doi.org/10.1002/chin.200309029
  6. Single Electron Transfer Induced Photoaddition Reactions of Silyl Enol Ether to N-Methylphthalimide vol.28, pp.4, 2002, https://doi.org/10.5012/bkcs.2007.28.4.629
  7. Photoadditions of Silyl Butadienyl Ether to 1,2-Diketones vol.57, pp.1, 2002, https://doi.org/10.5012/jkcs.2013.57.1.9
  8. Comparison of Photoaddition Reactions of Aromatic Carbonyl Compounds with Silyl Thioketene Acetal vs. Silyl Ketene Acetal vol.2, pp.3, 2013, https://doi.org/10.5857/rcp.2013.2.3.76
  9. Comparison of Photochemical Reactions of Aromatic Carbonyl Compounds with a Silyl Ketene Thioacetal and a Silyl Ketene Acetal vol.90, pp.2, 2002, https://doi.org/10.3987/com-14-s(k)69
  10. The Paternò-Büchi reaction - a comprehensive review vol.18, pp.10, 2002, https://doi.org/10.1039/c9pp00148d