References
- Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. 2001, 40, 486. https://doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
- Ahn, K. H.; Kim, S.-G.; Jung, J.; Kim, K.-H.; Kim, J.; Chin, J.; Kim, K. Chem. Lett. 2000, 170.
- Kim, S.-G.; Ahn, K. H. Chem. Eur. J. 2000, 6, 3399. https://doi.org/10.1002/1521-3765(20000915)6:18<3399::AID-CHEM3399>3.0.CO;2-M
- Kim, S.-G.; Kim, K.-H.; Jung, J.; Shin, S. K.; Ahn, K. H. J. Am. Chem. Soc. 2002, 124, 591. https://doi.org/10.1021/ja0119696
- Herman, H. B.; Rechnitz, G. A. Science 1974, 184, 1074. https://doi.org/10.1126/science.184.4141.1074
- Herman, H. B.; Rechnitz, G. A. Anal. Chim. Acta 1975, 76, 155. https://doi.org/10.1016/S0003-2670(01)81997-8
- Herman, H. B.; Rechnitz, G. A. Anal. Lett. 1974, 8, 147.
- Burtis, C. A.; Ashwood, E. R. Clinical Chemistry; W. B. Saunders Co.: Philadelphia, 1994; Chapter 30.
- Perez-Ponce, A.; Garrigues, S.; de la Guardia, M. Vib. Spectrosc. 1998, 16, 61. https://doi.org/10.1016/S0924-2031(97)00046-5
- Crossno, S. K.; Kalbus, L. H.; Kalbus, G. E. J. Chem. Edu. 1996, 73, 175. https://doi.org/10.1021/ed073p175
- Meyerhoff, M. E.; Pretsch, E.; Welti, D. H.; Simon. W. Anal. Chem. 1987, 59, 144. https://doi.org/10.1021/ac00128a030
- Lee, H. J.; Yoon, I. J.; Yoo, C. L.; Pyun, H.-J.; Cha, G. S.; Nam, H. Anal. Chem. 2000, 72, 4694. https://doi.org/10.1021/ac991212l
- Kilway, K. V.; Siegel, J. S. J. Am. Chem. Soc. 1992, 114, 255. https://doi.org/10.1021/ja00027a033
- Hartshorn, C. M.; Steel, P. J. Aust. J. Chem. 1995, 48, 1587. https://doi.org/10.1071/CH9951587
- Singh, R. P.; Shreeve, J, M. J. Org. Chem. 2000, 65, 3241. https://doi.org/10.1021/jo991972w
- Shimizu, R.; Yoneda, E.; Fuchikami, T. Tetrahedron Lett. 1996, 37, 5557. https://doi.org/10.1016/0040-4039(96)01155-0
- Linderman, R. J.; Graves, D. M. J. Org. Chem. 1989, 54, 661. https://doi.org/10.1021/jo00264a029
- Anthony, J. E.; Khan, S. I.; Rubin, Y. Tetrahedron Lett. 1997, 38, 3499. https://doi.org/10.1016/S0040-4039(97)00712-0
- Helberg, J. S. E.; Engman, L. J. Organomet. Chem. 1985, 296, 357. https://doi.org/10.1016/0022-328X(85)80366-1
- Mayor, M.; Lehn, J.-M. Helv. Chim. Acta 1997, 80, 2277.
- Hong, Y. K.; Yoon, W. J.; Oh, H. J.; Jun, Y. M.; Pyun, H.-J.; Cha, G. S.; Nam, H. Electroanalysis 1997, 9, 865. https://doi.org/10.1002/elan.1140091112
- Hofmeister, F. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247. https://doi.org/10.1007/BF01918191
Cited by
- Molecular Recognition of Anions through Hydrogen Bonding Stabilization of Anion−Ionophore Adducts: A Novel Trifluoroacetophenone-Based Binding Motif vol.5, pp.21, 2003, https://doi.org/10.1021/ol035624z
- Supramolecular Based Membrane Sensors vol.6, pp.8, 2006, https://doi.org/10.3390/s6081018
- Tripodal Receptors for Cation and Anion Sensors vol.6, pp.8, 2006, https://doi.org/10.3390/s6080978
- Immobilization of tris(2 pyridyl) methylamine in a PVC-Membrane Sensor and Characterization of the Membrane Properties vol.6, pp.1, 2012, https://doi.org/10.1186/1752-153X-6-40
- Selective recognition and electrochemical sensing of dicarboxylates with a ferrocene-based bis(o-trifluoroacetylcarboxanilide) receptor pp.31, 2006, https://doi.org/10.1039/b606081a
- Convenient synthesis of tripodal-pyrrole receptor and anion binding properties vol.66, pp.1-2, 2010, https://doi.org/10.1007/s10847-009-9700-0
- Synthesis of Tripodal Trifluoroacetophenone Derivatives and Their Evaluation as Ion-Selective Electrode Membranes. vol.34, pp.12, 2002, https://doi.org/10.1002/chin.200312094
- Benzene-based tripodal isothiouronium compounds as sulfate ion receptors vol.45, pp.4, 2002, https://doi.org/10.1016/j.tetlet.2003.11.048
- Metal-containing Trifurcate Chemosensing Ensemble for Phytate vol.19, pp.4, 2002, https://doi.org/10.1080/10610270701355034
- Electrochemical and 19F NMR Detection of Anions, Ion-pairs, and a Zwitterionic Amino Acid with a Ferrocene-based Hetero-ditopic Receptor Bearing o-(Carboxamido)trifluoroacetophenone and Cro vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2355
- Highly cooperative ion-pair recognition of potassium cyanide using a heteroditopic ferrocene-based crown ether–trifluoroacetylcarboxanilide receptor vol.2008, pp.6, 2002, https://doi.org/10.1039/b715633b
- Star‐Shaped Tripodal Chemosensors for the Detection of Aliphatic Amines vol.17, pp.3, 2011, https://doi.org/10.1002/chem.201000787
- Oxoanion recognition by benzene-based tripodal pyrrolic receptors vol.24, pp.1, 2002, https://doi.org/10.1080/10610278.2011.622392
- Inorganic and organometallic hemicage podates and cage cryptates incorporating a benzene platform vol.256, pp.15, 2002, https://doi.org/10.1016/j.ccr.2012.02.001
- N′, N′′, N′′′-tris(2-pyridyloxymethyl) ethane as ionophore in potentiometric sensor for Pb(II) ions vol.126, pp.1, 2002, https://doi.org/10.1007/s12039-013-0546-z