DOI QR코드

DOI QR Code

Dynamics of Hydrogen Molecules Priduced on a Graphite Surface


Abstract

We have studied the dynamics of energy-rich hydrogen molecules produced on a graphite surface through H(g) + H(ad)/C(gr) → $H_2$ + C(gr) at thermal conditions mimicking the interstellar medium using a classical trajectory procedure. The recombination reaction of gaseous H atom at 100 K and the adsorbed H atom on the interstellar graphite grains at 10 K efficiently takes place on a subpicosecond time scale with most of the reaction exothermicity depositing in the product vibration, which leads to a strong vibrational population inversion. The molecules produced in nearly end-on geometry where H(g) is positioned below H(ad) rotate clockwise and are more highly rotationally excited. but in low-lying vibrational levels. The rotational axis of most of the molecule rotating clockwise is tilted from the surface normal by more than 30°, the intensity peaking at 35°. The molecules produced when H(ad) is close to the surface rotate counter-clockwise and are weakly rotationally excited, but highly vibrationally excited. These molecules tend to align their rotational axes parallel to the surface. The number of molecules rotating clockwise is eight times larger than that rotating counter-clockwise.

Keywords

References

  1. Rettner, C. T. Phys. Rev. Lett. 1992, 69, 383. https://doi.org/10.1103/PhysRevLett.69.383
  2. Rettner, C. T.; Lee, J. J. Chem. Phys. 1994, 101, 10185. https://doi.org/10.1063/1.468008
  3. Schermann, C.; Pichou, F.; Landau, M.; Cadez, I.; Hall, R. I. J. Chem. Phys. 1994, 101, 8152. https://doi.org/10.1063/1.468242
  4. Jachimowski, T. A.; Weinberg, W. H. J. Chem. Phys. 1994, 101, 10997. https://doi.org/10.1063/1.467850
  5. Shin, H. K. Chem. Phys. Lett. 1995, 244, 235. https://doi.org/10.1016/0009-2614(95)00877-7
  6. Kratzer, P. J. Chem. Phys. 1997, 106, 6752. https://doi.org/10.1063/1.473672
  7. Buntin, S. A. J. Chem. Phys. 1998, 108, 1601. https://doi.org/10.1063/1.475530
  8. Lim, S. H.; Ree, J.; Kim, Y. H. Bull Korean Chem. Soc. 1999, 20, 1136.
  9. Ghio, E.; Mattera, L.; Salvo, C.; Tommasini, F.; Valbusa, E. J. Chem. Phys. 1980, 73, 556. https://doi.org/10.1063/1.439855
  10. Hollenbach, D. H.; Salpeter, E. E. J. Chem. Phys. 1970, 53, 79. https://doi.org/10.1063/1.1673836
  11. Hunter, W. A.; Watson, W. D. Astrophy. J. 1978, 226, 477. https://doi.org/10.1086/156630
  12. Duley, W. D.; Williams, D. A. Interstellar Chemistry; Academic Press: London, 1984.
  13. Williams, D. A. in Bailey, M. E.; Williams, D. A., Eds.; Dust in the Universe; Cambridge Univ. Press: Cambridge, 1988; p 391.
  14. Fitzpatric, E. L.; Masa, D. Astrophys. J. Suppl. Ser. 1990, 72, 163. https://doi.org/10.1086/191413
  15. Papoular, R.; Conrad, J.; Guillois, O.; Nenner, I.; Reynaud, C.; Rouzard, J.-N. Astron. Astrophys. 1996, 315, 222.
  16. Guillois, O.; Ledoux, G.; Nenner, I.; Papoular, R.; Reynaud, C. Faraday Discuss. 1998, 109, 335. https://doi.org/10.1039/a800068i
  17. Parneix, P.; Brechignac, Ph. Astron. Astrophys. 1998, 334, 363.
  18. Kim, Y. H.; Ree, J.; Shin, H. K. Chem. Phys. Lett. 1999, 314, 1. https://doi.org/10.1016/S0009-2614(99)01124-0
  19. Jeloaica, L.; Sidis, V. Chem. Phys. Lett. 1999, 300, 157. https://doi.org/10.1016/S0009-2614(98)01337-2
  20. Farebrother, A. J.; Meijer, A. J. H. M.; Clary, D. C.; Fisher, A. J. Chem. Phys. Lett. 2000, 319, 303. https://doi.org/10.1016/S0009-2614(00)00128-7
  21. Jackson, B.; Lemoine, D. J. Chem. Phys. 2001, 114, 474. https://doi.org/10.1063/1.1328041
  22. Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Lett. 2002, 353, 368. https://doi.org/10.1016/S0009-2614(02)00026-X
  23. Sha, X.; Jackson, B.; Lemoine, D. J. Chem. Phys. 2002, 116, 7158. https://doi.org/10.1063/1.1463399
  24. Adelman, S. A. J. Chem. Phys. 1979, 71, 4471. https://doi.org/10.1063/1.438200
  25. Ree, J.; Shin, H. K. J. Chem. Phys. 1999, 111, 10261. https://doi.org/10.1063/1.480375
  26. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.
  27. Shin, H. K. J. Chem. Phys. 1978, 68, 335. https://doi.org/10.1063/1.435465
  28. Kim, Y. H.; Ree, J.; Shin, H. K. J. Chem. Phys. 1998, 108, 9821. https://doi.org/10.1063/1.476457
  29. American Institute of Physics Handbook, 3rd ed.; Gray, D. E., Ed.; McGraw-Hill: New York, 1972; pp 4-115.
  30. Ree, J.; Kim, Y. H.; Shin, H. K. J. Chem. Phys. 1996, 104, 742. https://doi.org/10.1063/1.470799
  31. Kummel, A. C.; Sitz, G. O.; Zare, R. N.; Tully, J. C. J. Chem. Phys. 1988, 89, 6947. https://doi.org/10.1063/1.455320
  32. Kolos, W.; Szalewicz, K.; Monkhorst, H. J. J. Chem. Phys. 1986, 84, 3278. https://doi.org/10.1063/1.450258

Cited by

  1. Molecular dynamics simulation of gaseous atomic hydrogen interaction with hydrocarbon grains vol.359, pp.2, 2005, https://doi.org/10.1111/j.1365-2966.2005.08948.x
  2. Formation of Hydroxyl Radical from the Hydrogen Chemisorbed Silicon Surface by Incident Oxygen Atoms vol.24, pp.7, 2002, https://doi.org/10.5012/bkcs.2003.24.7.986
  3. Collision-Induced Intramolecular Energy Flow in Highly Excited Toluene vol.24, pp.8, 2002, https://doi.org/10.5012/bkcs.2003.24.8.1223
  4. Effect of the Inner-Zone Vibrations on the Dynamics of Collision-Induced Intramolecular Energy Flow in Highly Excited Toluene vol.26, pp.8, 2005, https://doi.org/10.5012/bkcs.2005.26.8.1269
  5. Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface vol.28, pp.4, 2002, https://doi.org/10.5012/bkcs.2007.28.4.635