A Facile One-Pot Operations of Reduction and Allylation of Nitrobenzaldehydes Mediated by Indium and Their Applications ${ }^{\dagger}$

Yong Seo Cho, Kyung Ho Kang, Joo Hwan Cha, Kyung Il Choi, Ae Nim Pae, Hun Yeong Koh, and Moon Ho Chang Biochemicals Research Center, Korea Institute of Science and Technologv, P.O. Box 131 Cheongrvang, Seoul 130-650, Korea Received ipril 2. 2002

Abstract

Various nitrobenzaldehydes were simultaneously ally lated and reduced using indium in the presence of HCl in aqueous media to give compounds having both functionality of homoally lic alcohol and aromatic amine. Sequential protection of the amino group and oxidation of the anilinyl homoally lic alcohol provided useful precursors of heterocyclic compounds such as dihydroindolones and dihydroquinolones, which could be efficiently synthesized through intramolecular cyclization reaction.

Key Words: Simultancous reduction-allylation. Indium. Aqucous media

Introduction

Heterocycles such as quinolone. dilydroquinolone. indole. and dihydroindolone have been found in a variety of the biologically active compounds. Development of efficient synthetic protocol for these compounds is very important in organic and medicinal chemistry: Both metal-mediated allylation reactions ${ }^{1}$ and reduction reactions of nitro group ${ }^{-3}$ are important processes frequently met in organic synthesis. Kecently, we found that indium can mediate the reduction of nitro group to amine in the presence of HCl in aqueous THF. ${ }^{4}$ Combining these two actions of indium, we have performed one-pot reduction and allylation reaction of nitro and aldehyde groups. Herein we report simultaneous reduc-tion-allylation reactions of nitro and aldehyde groups of various nitrobenzaldehydes $\mathbf{1}$ in aqueous media to give anulinyl homoallylic alcohols 2 under a mild reaction condition (Scheme 1). The anilinyl homoallylic alcohols 2 could successfully transform into dily droindolones 6 and dily d roquinolones 7 by using base without protection for the intramolecular cyclization.

Results and Discussion

The results of the reactions of various s-nitrobenzalde-

1

6
2
or

7

Scheme 1
${ }^{\dagger}$ This paper is dedicated to the late Professor Sang Chul Shim.
hydes were summarized in Table 1. The first three nitrobenzaldehydes were converted to the corresponding anilinyl homoallylic alcohol 2 in moderate yields (Entry 1-12). The 6-nitropiperonal in entry 13-16 gave low yields suggesting an unfavorable effect of electron-releasing substituents and labile moiety in acidic condition. In case of 3-methoxy-2nitrobenzaldehyde (Entry 17-20). only the allylation products 3a-3d were obtained in $88-94 \%$ yields. probably due

Table 1. Ally lation-Reduction Reactions of o-Nitrobenzaldehyde

		$\underbrace{\mathrm{Er}}_{\substack{1, \text { r.t. } \\ i f(3-1)}}$	 2		
Lintry	R	Allvi bromides			Products
		R_{1}	R_{2}	me (mun)	(Yield \%) ${ }^{\text {c }}$
1	II	HI	11	15	2a(39)
2		ClH_{3}	II	25	2b(78)
3		HI	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	30	2c(72)
4		HI	CH,	20	2d(60)
5	$2-\mathrm{Cl}^{1}$	II	II	15	2 e (90)
6		CH_{3}	II	15	$2 \mathrm{f}(76)$
7		HI	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	15	2g(74)
8		HI	CH_{3}	15	2h(79)
9	$3-\mathrm{Cl}^{\text {b }}$	II	II	30	2i(59)
10		CH_{3}	II	25	2j(66)
11		HI	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	30	2k(6)
12		HI	CH	30	21(54)
13	$3.4-\left(\mathrm{OCH}_{2} \mathrm{O}\right)^{\text {i }}$	H	II	15	2m(22)
14		CH_{3}	II	15	2n(47)
15		H	$\mathrm{CO}_{2} \mathrm{CH}$	30	20(27)
16		H	CH:	30	2p(20)
17	$3-\mathrm{OMc}{ }^{\text {f }}$	H	II	5	$3 \mathrm{a}(88)$
18		Cli_{3}	II	15	3b(88)
19		H	$\mathrm{CO}_{2} \mathrm{CII}=$	10	$3 \mathrm{c}(91)$
20		H	CH:	15	3d(94)

a-Chloro-6-nitrobenzaldehyde: ${ }^{3} 3$-Chloro-2-nitrobenzaldehyde: "6-Nitropiperonal: "3-Methoxy-2-nitrobenzaldehyde: "Isolated vield.

Table 2. Intramolecular Cyclization of $5 \mathrm{a}-5 \mathrm{c}$ in the Presence of Bases

1	11 (5a)	D13U (2)	20	6a(45)
2	11 (5a)	DIPLA (2)	4 h	6at(88)
3	2-Cl (5b)	D13U (2)	20	$6 \mathrm{~b}(-)^{\text {' }}$
4	2-C1(5b)	DIPLEA (2)	10	6 d (84)
5	$3-\mathrm{Cl}^{\prime \prime}(5 \mathrm{c})$	D1PEA(2)	40	$6 \mathrm{c}(67)$

"Isolated yield: 'No product was obtained
to the electron donating effect of the methoxy group at the 3position.

Simultancous reactions of ally lation and reduction could be accomplished in the presence of HCl by indium. Without HCl . only the ally lation of aldehyde group only proceeded indicating that HCl made a crucial role for the reduction. For example. the reaction between 3 -chloro-2-nitrobenvaldehyde and allyl bromide by indium without HCl gave the only ally lated product at room temperature for 12 h . along with 40% of the recovered starting material.

Various anilinyl homoallylic alcohols 2 gencrated were protected by tosylation with TsCl at $0^{\circ} \mathrm{C}$ in pyridine for 4 h 12 h to afford the sulfonamides + in 62% to 97% yiclds. Sulfonamides 4 were oxidized with using PCC at rt for $4 \mathrm{~h}-$ 12 h to give $5 \mathrm{a}-5 \mathrm{i}$ in 44% to 91% yiclds (Scheme 2).

We carried out the intramolecular cyclization of $\mathbf{5}$ a. which has electron-defficient methoxycarbonyl moiety with 2 cq . of DBU as shown in entry 1 of Table 2. The 1.4-addition to $\alpha . \beta$-unsaturated ester after migration of double bond by DBU occurred to give the five-membered dihydroindolone 6a in moderate yield (45%). In case of $\mathbf{5} \mathbf{b}$. no product was

5
$4 a(78 \%): \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}$:
$4 \mathrm{~b}(76 \%): \mathrm{R}=2-\mathrm{Cl}_{1} \mathrm{R}_{1}=\mathrm{H} . \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}$:
4c(62\%): $\mathrm{R}=3-\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}$.
$4 \mathrm{~d}(\mathrm{BO} \%): \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}_{\text {; }}$
4e(97\%): $\mathrm{R}=3-\mathrm{Cl}_{2} \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$;
$4 f(87 \%): R=H, R_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$;
$4 \mathrm{~g}(92 \%): \mathrm{R}=3-\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$;
4h(89%) $\mathbf{R}=\mathrm{H}, \mathrm{R}_{1}=\mathrm{H} . \mathrm{R}_{2}=\mathrm{CH}_{3}$;
$41(94 \%): R=3-C l, R_{1}=H, R_{2}=\mathrm{CH}_{3}$.
$5 \mathrm{a}(84 \%): \mathrm{R}=\mathrm{H}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}$: $\mathbf{5 b}(65 \%): \mathrm{R}=2-\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}$; $5 \mathrm{C}(85 \%): \mathrm{R}=3-\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}$; 5d $(73 \%): R=H, R_{1}=R_{2}=H$; $\mathrm{Se}(86 \%)$: $\mathrm{R}=3-\mathrm{Cl}_{1} \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$;
 $5 \mathrm{~g}(70 \%): \mathrm{R}=3-\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$; $5 h(71 \%): R=H, R_{1}=H . R_{2}=\mathrm{CH}_{3}$; $51(77 \%): \mathrm{R}=3-\mathrm{Cl}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$

Table 3. Intramolecular Coclization of $\mathbf{5 d} \mathbf{- 5 i}$ in the Presence of DBU (2 eq.)
Fintry
"Tsolated sield: "Reaction mixture was retluxed at $40{ }^{\circ} \mathrm{C}$ in sealed tube.
obtained (entry 3) that might be due to the strong basicity of DBU.

The intramolecular cyclizations were improved by using DIPEA ($i-\mathrm{Pr}_{2} \mathrm{NEt}$). Threc substrates $\mathbf{5 a - 5}$ smoothly procecded to give the corresponding dihydroindolone rings $6 \mathbf{a}-\mathbf{6 c}$ in $67-88 \%$ yiclds by using DIPEA (Table 2) through the migration of the double bond under the mild basic condition.

The intramolecular cyclizations of sulfonamides $\mathbf{5 d} \mathbf{- 5 i}$ gencrated from the other allyl bromides such as allyl bromide. 3-bromo-2-methylpropenc. and crotyl bromide were also studied. As shown in Table 3. the dihydroquinolone rings could be obtained by Michacl addition reaction of $\alpha . \beta$ unsaturated ketones in stitt generated by using DBU. Intramolccular cyclizations of $\mathbf{5 d - 5 g}$ smoothly proceeded to give $7 \mathrm{~d}-7 \mathrm{~g}$ at room temperature.

In case of $\mathbf{5 h}$ and $\mathbf{5 i}$. which compounds have methylpropenyl moicty (entry 5.6 Table 3). treatment with DBU at room temperature for 24 h gave both the cyclized product 7 h and $7 \mathbf{i}$ and the migrated intermediate $\mathbf{8 h}$ and $\mathbf{8 i}$ in a ratio of $1: 1.2$ as shown in Scheme 3. These cyclizations could be completed to the corresponding product 7 h and 7 i at $40^{\circ} \mathrm{C}$ in sealed tube for $48 \mathrm{~h}-50 \mathrm{~h}$. respectively.

In conclusion, various substituted nitrobenzaldelyydes underwent a simultaneous ally lation and reduction reaction mediated by indum in the presence of HCl in aqueous media. Sequential protection and oxidation reactions of various anilinyl homoallylic alcohols provided useful precursors for the 5 - and 6membered heterocyclic compounds such as dilydroindolone or dily droquinolone rings which could be efficiently obtained by intramolecular cyclization using DIEA or DBU.

Scheme 2
Scheme 3

Experimental Section

All the commercially available reagents were obtained from Aldrich. Fluka. and generally used without further purification. Anhydrous procedures were performed with purified solvents. Reaction was performed under nitrogen atmosphere.
${ }^{1}$ H NMR and ${ }^{13}$ C NMR spectra were oblained on a Varian Gemini 300 and Bruker Adrance 300 spectrometers. Nuclear magnetic resonance spectra were acquired at 300 (or 200) MHz for ${ }^{1} \mathrm{H}$. and $75 \mathrm{MH} /$. for ${ }^{13} \mathrm{C}$. Infrared spectra were obtained on a Perkin Elmer l6FPC FT-IR spectrometer using KBr pellet. CHCl_{3} or neat. $\mathrm{GC} / \mathrm{MSD}$ were oblained on a Hewlell Pachard 5890 . HRMS spectra were obtained on a JMS-700 mass spectrometer (Jcol). Analytical thin layer chromatographics (TLC) were carried out on precoated silica gel plates (Merck Kieselgel 60F254. layer thickness 0.25 mm). Flash column chromatographies were conducted with silica gel grade 230 -400 mesh (Merck Kiesegel 60 Art 9385).

Representative procedure for a simultaneous allylation and reduction reactions.

Synthesis of 1-(2-aminophenyl)but-3-en-1-ol (2a): 2Nitrobenzaldehyde (40.5 mg .0 .27 mmol). indium (184 mg . 1.60 mmol) and allyl bromide ($34.6 \mu \mathrm{~L} .0 .4 \mathrm{mmol}$) were dissolved in aqucous solution ($\mathrm{H}_{2} \mathrm{O}-\mathrm{THF}$. v/:. $3: 1.3 \mathrm{~mL}$) and concentrated $\mathrm{HCl}(37 \% .180 \mathrm{~mL})$ was added dropwise to the reaction mixture. After stirring for 5 min at room temperature. the reaction mixture was extracted with cthylacetate ($10 \mathrm{~mL} \times 2$) and sequentially washed with saturated NaHCO_{3}. water, and brine. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. concentrated in vacto. and purilied by column chromatography to give product ($17.6 \mathrm{mg} .39 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MH九. CDCl_{3}) $\delta 2.56-2.75(2 \mathrm{H} . \mathrm{m}) .3 .90(2 \mathrm{H}$. brs). $4.68(1 \mathrm{H} . \mathrm{dd} . J=5.43 \mathrm{H} \not . J=8.49 \mathrm{H} \%) .5 .14(1 \mathrm{H} . \mathrm{d} . J=$ $5.58 \mathrm{H} \neq) .5 .19(1 \mathrm{H} . \mathrm{d} .13 .9 \mathrm{~Hz}) .586(1 \mathrm{H} . \mathrm{m}) .6 .65(1 \mathrm{H} . \mathrm{d} . J$ $=7.83 \mathrm{H} \%) .6 .73(1 \mathrm{H} . \mathrm{L} . J=6.6 \mathrm{~Hz}) .7 .04(2 \mathrm{H}$. overlap m$)$: ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 41.3,74.3,118.1,119.5 .127 .7$. 128.8. 129.9. 135.2; IR (neat. cm^{-1}) $3714,3415.3046 .2917$: MS(EI) Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}: 163.09$. Found: 163.00 .

1-(2-Aminophenyl)-2-methylbut-3-en-1-ol (2b): 'H NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.16(3 \mathrm{H}, \mathrm{d}, J=6.66 \mathrm{~Hz}) .2 .28(1 \mathrm{H}$. m). $3.7(2 \mathrm{H}$, brs $) .4 .45(1 \mathrm{H} . \mathrm{d} . J=7.47 \mathrm{~Hz}) .4 .96(1 \mathrm{H}, \mathrm{d} . J=$ $12.0 \mathrm{~Hz}) .5 .02(1 \mathrm{H} . \mathrm{d} . J=17.7 \mathrm{~Hz}) .5 .72(\mathrm{lH.m}) .6 .71(2 \mathrm{H}$. overlap m) , $7.11(2 \mathrm{H}$. overlap m$)$: ${ }^{13} \mathrm{C}$ NMR (75 MHz . CDCl_{3}) $\delta 38.7 .41 .6 .71 .7 .116 .4,119.0 .124 .2$. 127.5. 131.2. 134.6. 145.1: IR (neat. cm^{-1}) 3704. 3418. 3045, 2950: MS(EI) Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{1 \leq} \mathrm{NO}:$ 177.11. Found: 177.00 .
2-[2-(2-Aminophenyl)-2-hydmxyethyl]acrylic acid methyl ester (2c): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 2.67$ (1H. dd. $J=$ 9.09 Hz .13 .9 Hz) , $2.81(1 \mathrm{H}$, dd. $J=3.6 \mathrm{~Hz} .13 .9 \mathrm{~Hz}), 3.74$ (2 H. brs). $3.78(3 \mathrm{H}$. s). $4.85(1 \mathrm{H}$. dd. $J=3.63 \mathrm{~Hz} .9 .12 \mathrm{~Hz}$). $5.69(1 \mathrm{H}, \mathrm{d} . J=1 \mathrm{~Hz}), 6.25(1 \mathrm{H} . \mathrm{d} . J=1 \mathrm{~Hz}), 6.65(1 \mathrm{H} . \mathrm{d} . J$ $=7.92 \mathrm{~Hz}) .6 .73(1 \mathrm{H}, \mathrm{t} . J=7.47 \mathrm{~Hz}) .7 .08(1 \mathrm{H} . \mathrm{t} . J=7.74$ $\mathrm{Hz}) .7 .16(1 \mathrm{H} . \mathrm{d} . J=6.09 \mathrm{~Hz}):{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz} . \mathrm{CDCl}_{3}\right)$ $\delta 39.3$. 51.9.71.0. 116.2, 117.9. 126.2, 127.4, 128.1, 128.3. 136.8. 143.9. 168.0. IR ($\mathrm{KBr} .\mathrm{~cm}{ }^{-1}$) 3405. 3335. 3246. 2957.

1715 (-C=O): MS (El) Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}: 221.10$. Found: 221.00.

1-(2-Aminophenyl)-3-methylbut-3-en-1-ol (2d): 'H NMR ($300 \mathrm{MH} \angle . \mathrm{CDCl}_{3}$) $\delta 1.82(3 \mathrm{H} . \mathrm{s}) .2 .47(1 \mathrm{H} . \mathrm{dd} . J=4.05 \mathrm{H} \%$. $10.5 \mathrm{H} \%$). $2.73(1 \mathrm{H} . \mathrm{dd} . J=4.5 \mathrm{~Hz} .9 .87 \mathrm{H} \%) .3 .60(2 \mathrm{H} . \mathrm{brs})$. $4.82(1 \mathrm{H} . \mathrm{dd} . J=4.14 \mathrm{~Hz} .11 .0 \mathrm{~Hz}) .4 .89(1 \mathrm{H} . \mathrm{s}) .4 .95(1 \mathrm{H}$. s). $6.66(1 \mathrm{H}, \mathrm{d} . J=7.86 \mathrm{~Hz}) .6 .73(1 \mathrm{H}, \mathrm{t} . J=6.33 \mathrm{H} \not \subset) .7 .09$ (2 H . overlap m): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \approx \mathrm{CDCl}_{3}$) $\delta 22.8$. 44.t. 71.7.116.9.118.2.127.3. 128.1. 128.5, 129.3.143.0.145.6: IR (KBr. cm^{-1}) 3365. 3286. 2937. 2997: MS(EI) Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}: 177.11$, Found: 177,10.

1-(2-Amino-6-chlorophenỵl)but-3-en-1-0l (2e): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MH} \not, \mathrm{CDCl}_{3}\right) \delta{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \neq \mathrm{CDCl}_{3}$) $\delta 2.52$ $(\mathrm{lH} . \mathrm{m}) .2 .73(1 \mathrm{H} . \mathrm{m}) .4 .72(2 \mathrm{H} . \mathrm{brs}) .5 .14(\mathrm{lH} . \mathrm{d} . J=10.3$ $\mathrm{H} \%$). $5.19(\mathrm{lH} . \mathrm{d} . J=14.0 \mathrm{H} \%) .5 .88(\mathrm{lH} . \mathrm{m}) .6 .5(\mathrm{lH} . \mathrm{d} . J=$ $8.04 \mathrm{H} \%) .6 .70(1 \mathrm{H} . \mathrm{d} . J=7.89 \mathrm{H} \%) .6 .9+(1 \mathrm{H} .1 . J=7.98$ $\mathrm{H} \%$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) $\delta 38.9 .71 .8 .116 .8 .118 .8$. 124.2. 128.8. 129.0. 134.9. 143.0. 148.0: IR (ncat. cm^{-1}) 3475. 3375. 3036. 2947: MS (EI) Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}: 197.06$. Found: 196.95.

1-(2-Amino-6-chlorophenỵl)-2-methỵibut-3-en-1-0l (2f): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \nsim . \mathrm{CDCl} 3$) $\delta 1.20(3 \mathrm{H} . \mathrm{d} . J=6.78 \mathrm{~Hz})$. $3.02(1 \mathrm{H} . \mathrm{m}) .3 .38(2 \mathrm{H} . \mathrm{brs}) .4 .90(1 \mathrm{H} . \mathrm{d} . J=16.7 \mathrm{~Hz}) .4 .95$ $(1 \mathrm{H} . \mathrm{d} . J=14.0 \mathrm{H} / \mathrm{)} .5 .87(\mathrm{IH} . \mathrm{m}) .6 .53(1 \mathrm{H} . \mathrm{t} . J=7.4 \mathrm{H} /$). $6.72(\mathrm{IH} . \mathrm{d} . J=7.98 \mathrm{H} \%) .6 .96(\mathrm{IH} . \mathrm{d} . J=8.73 \mathrm{H} \neq){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} 九 . \mathrm{CDCl}_{3}$) δ 16.6. +1.4. 75.3. 114.6. 116.5. 119.0. 120.2. 128.6. 134.0.140.1. 147.2: IR (KBr. cm^{-1}) 3245. 3335. 3066. 2976. 2877: MS (EI) Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}: 211$. 07 . Found: 211.00 .

2-[2-(2-Amino-6-chlorophenyl)-2-hydroxyethyl]acrylic acid methyl ester (2g): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) $\delta 2.75$ ($1 \mathrm{H} . \mathrm{dd} . J=5.43 \mathrm{H} \not . .13 .8 \mathrm{H} \%$). $3.02(1 \mathrm{H} . \mathrm{dd} . J=8.52 \mathrm{~Hz}$. $13.7 \mathrm{H} \%$). $3.71(3 \mathrm{H}$. s). $4.22(2 \mathrm{H}$. brs). 5.55 (1 H. overlap). $5.56(\mathrm{lH} . \mathrm{d} . J=1.4 \mathrm{H} \%) .6 .19(\mathrm{lH} . \mathrm{d} . J=1.35 \mathrm{H} \%) .6 .49(1 \mathrm{H}$. $\mathrm{d} . J=8.0 \mathrm{H} \%) .6 .66(\mathrm{lH} . \mathrm{d} . J=7.98 \mathrm{~Hz}) .6 .92(\mathrm{IH} . \mathrm{t} . J=$ $7.95 \mathrm{~Hz}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 37.5 .53 .3 .71 .5$. 116.1. 116.7. 119.2. 124.0. 128.9. 134.1. 137.7. 148.2. 169.0. IR (KBr. cm^{-1}) 3405.3296 .3146 .2957 .2847 .1561 : MS (EI) Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{1+} \mathrm{CINO}$: 255.06. Found: 255.00.

1-(2-Amino-6-chlorophenyl)-3-methylbut-3-en-1-ol (2h): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CD}_{3} \mathrm{OD}\right) \delta{ }^{1} \mathrm{H}$ NMR (300 MHz . $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.79(3 \mathrm{H} . \mathrm{s}) .2 .42(1 \mathrm{H}, \mathrm{ml}) .2 .65(1 \mathrm{H}, \mathrm{m}) .4 .71$ $(1 \mathrm{H} . \mathrm{s}) .4 .77(1 \mathrm{H}, \mathrm{s}) .5 .52(1 \mathrm{H}, \mathrm{m}) .6 .61(1 \mathrm{H}, \mathrm{t} . J=8.01 \mathrm{~Hz})$. $6.79(1 \mathrm{H} . \mathrm{d} . J=7.8 \mathrm{~Hz}) .7 .10(1 \mathrm{H} . \mathrm{d} . J=7.98 \mathrm{~Hz}):{ }^{13} \mathrm{C} . \mathrm{NMR}$ (75 MHz. CD 3 OD) $\delta 22.9 .42 .7 .70 .1 .116 .0 .12+8.129 .0$. 133.0. 142.9. 143.2. 148.2, 151.4: $\mathrm{IR}\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right) 3395$. 3325. 3266. 2777: MS (EI) Aıal. Calcd. for $\mathrm{C}_{\lrcorner \jmath} \mathrm{H}_{\lrcorner} \mathrm{ClNO}$: 211.07. Found: 211.00.

1-(2-Amino-5-chlorophenyl)but-3-en-1-ol (2i): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.59(2 \mathrm{H} . \mathrm{ml}) .3 .65(2 \mathrm{H} . \mathrm{brs}) .4 .63(\mathrm{LH}$. dd. $J=5.28 \mathrm{~Hz} .8 .31 \mathrm{~Hz}) .5 .16(1 \mathrm{H} . \mathrm{d} . J=10.1 \mathrm{~Hz}) .5 .19$ $(1 \mathrm{H} . \mathrm{d} . J=17.0 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{m}), 6.57(1 \mathrm{H}, \mathrm{d} . J=3.21 \mathrm{~Hz})$. 7.02 (2 H . overlap): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 39.6 .72 .4$. 117.8. 118.6. 122.6. 127.1. 128.1. 134.3, 143.4: IR (KBr. cm^{-1}) $33+5,3226.2917$; MS(EI) Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{CINO}$: 197.06. Found: 197.05.

1-(2-Amino-5-chlorophenyl)-2-methylbut-3-en-1-ol (2j): ${ }^{l} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MH} \neq \mathrm{CDCl}_{3}\right) \delta 1.19(3 \mathrm{H} . \mathrm{d} . J=6.6 \mathrm{H} \not \subset) .3 .64$ ($2 \mathrm{H} . \mathrm{br} \mathrm{s}$). $4.41(1 \mathrm{H} . \mathrm{d} . J=6.4 \mathrm{H} f$) , $4.99(1 \mathrm{H} . \mathrm{d} . J=12 \mathrm{H} \%$). $5.03(1 \mathrm{H} . \mathrm{d} . J=17 \mathrm{~Hz}) ..5 .72(1 \mathrm{H}, \mathrm{m}) .6 .57(1 \mathrm{H}, \mathrm{d} . J=3.21$ $\mathrm{H} f$). $7.02\left(2 \mathrm{H}\right.$. overlap) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} 九 . \mathrm{CDCl}_{3}$) $\delta 1+9$. 41.6. 76.9. 115.2. 122.5, 126.5. 128.1. 128.9. 140.1. 142.8: IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3415, 3276. 2947, 2847: MS (El) Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{1+} \mathrm{ClNO}: 211.07$. Found: 211.00).
2-[2-(2-Amino-5-chlorophenyl)-2-hydroxyethyl]acrylic acid methỵl ester ($\mathbf{2 k}$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \ldots \mathrm{CD}_{3} \mathrm{COCD}_{3}$) δ $2.53(1 \mathrm{H} . \mathrm{dd} . J=9.06 \mathrm{~Hz} .13 .9 \mathrm{~Hz}) .2 .74(\mathrm{lH} . \mathrm{dd} . J=3.57$ $\mathrm{H} / .14 \mathrm{H} / \mathrm{f}) .3 .09(2 \mathrm{H} . \mathrm{brs}) .3 .71(3 \mathrm{H} . \mathrm{s}) .4 .73(1 \mathrm{H} . \mathrm{dd} . J=$ $3.42 \mathrm{~Hz} .9 \mathrm{H} \%) .5 .67(1 \mathrm{H} . \mathrm{s}) .6 .21(1 \mathrm{H} . \mathrm{s}) .6 .55(1 \mathrm{H} . \mathrm{d} . J=$ $8.43 \mathrm{H} /$) $.6 .96(1 \mathrm{H} . \mathrm{d} . J=8.43 \mathrm{H} /) .7 .12(1 \mathrm{H} . \mathrm{s}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} / . \mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta 37.1 .51 .1 .68 .4 .116 .6 .121 .1 .124$. 126.3. 127.0. 137.1. 1409. 167.2: 1R (KBr. cm^{-1}) 3365. 3216. 2986. 2827. 1696: MS(El) Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClNO}_{3}$: 255.06. Found: 255.01.

1-(2-Amino-5-chlorophenyl)-2-methylbut-3-en-1-ol (21): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \not \approx . \mathrm{CDCl}_{3}$) $\delta 1.81$ ($3 \mathrm{H} . \mathrm{s}$). 2.43 ($\mathrm{lH} . \mathrm{dd} . ~ J$ $=3.57 \mathrm{H} \not \approx .13 .8 \mathrm{H} \%) .2 .66(1 \mathrm{H} . \mathrm{dd} . J=10.1 \mathrm{H} / .13 .9 \mathrm{H} \%) .3 .6$ ($2 \mathrm{H} . \mathrm{brs}$) $4.75(1 \mathrm{H} . \mathrm{dd} . J=3.84 \mathrm{H} \approx 9.96 \mathrm{~Hz}) .4 .88(1 \mathrm{H} . \mathrm{s})$. $4.96(1 \mathrm{H} . \mathrm{s}) .6 .57(\mathrm{lH} . \mathrm{d} . J=8.7 \mathrm{H} r) .7 .18(1 \mathrm{H} . \mathrm{d} . J=2.4$ $\mathrm{H} \%$). $7.04(\mathrm{lH} . \mathrm{s}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \neq . \mathrm{CDCl}_{3}$) $\delta 23.0 .44 . \mathrm{l}$. 71.5. 118.1. 119.0. 127.3. 129.1, 129.3, 142.8. 144.3: 1R ($\mathrm{KBr} \mathrm{cm}^{-1}$) 3455. 3355. 3036.2927: MS (EI) Anal, Calcd. for $\mathrm{C}_{11} \mathrm{H}_{1+\mathrm{ClNO}}$ 211.07. Found: 211,00.

1-(6-Aminobenzo[1,3]dioxol-5-yl)but-3-en-1-0l (2m): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \neq \mathrm{CDCl}_{3}$) $\delta 2.61$ ($1 \mathrm{H} . \mathrm{m}$). 4.67 ($1 \mathrm{H} . \mathrm{dd} . ~ J=$ $5.49 \mathrm{H} \not .8 .25 \mathrm{H} \%) .5 .14(1 \mathrm{H} . \mathrm{d} . J=7.4 \mathrm{H} \%) .5 .19(1 \mathrm{H} . \mathrm{d} . J=$ $11.0 \mathrm{H} \%) .5 .79(1 \mathrm{H}, \mathrm{m}) .5 .83(2 \mathrm{H} . \mathrm{s}) .6 .28(1 \mathrm{H} . \mathrm{s}) .6 .62(1 \mathrm{H}$. s): ${ }^{15} \mathrm{C}$ NMR ($75 \mathrm{MH}, \mathrm{CDCl}_{3}$) $\delta+40.1 .72 .0 .98 .8 .100 .6$. 107.2. 118.3. 134.7. 139.7. 144.3. 147.8. 149.2: IR (ncat. cm^{-1}) 3330. 3250. 2978: MS (EI) Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}: 207.08$. Found: 207.06.

1-(6-Aminobenzo[1,3]dioxol-5-yl)-2-methylbut-3-en-1ol (2n): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MH}, \mathrm{CDCl}_{3}\right) \delta 1.14(3 \mathrm{H} . \mathrm{d} . J=6.66$ $\mathrm{Hz}) .2 .81(1 \mathrm{H} . \mathrm{m}) .3 .30(2 \mathrm{H}$, brs $) .4 .40(1 \mathrm{H} . \mathrm{d} . J=7.44 \mathrm{~Hz})$. $4.97(1 \mathrm{H} . \mathrm{d} . J=9.9 \mathrm{~Hz}), 5.11(1 \mathrm{H} . \mathrm{d} . J=17.1 \mathrm{~Hz}), 5.80(1 \mathrm{H}$. m) $.5 .84(2 \mathrm{H} . \mathrm{s}), 6.23(1 \mathrm{H} . \mathrm{s}), 6.58(1 \mathrm{H} . \mathrm{s}):{ }^{1.3} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 17.1,42.7,77.6,100.5 .108 .9 .114 .8,119.6$. 139.7. 140.1, 140.5, 146.9: IR (neat. cm^{-1}) $3350,3255$. 2976: MS (EI) Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}: 221.10$. Found: 221.00.

2-[2-(6-Aminobenzo[1,3]dioxol-5-yl)-2-hydroxyethyl|acrylic acid methyl ester (20): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right)$ $\delta 2.62(1 \mathrm{H} . \mathrm{dd} . J=9.06 \mathrm{~Hz} .13 .9 \mathrm{~Hz}), 2.78(1 \mathrm{H}$, dd,$J=3.54$ $\mathrm{Hz}, 17.4 \mathrm{~Hz}) .3 .70(3 \mathrm{H}$. brs $) .4 .80(1 \mathrm{H} . \mathrm{dd} . J=3.57 \mathrm{~Hz} .9 .06$ $\mathrm{Hz}) .5 .71(1 \mathrm{H}, ~ \mathrm{~s}) .5 .82(2 \mathrm{H}, ~ \mathrm{~s}) .6 .24(1 \mathrm{H} . \mathrm{s}) .6 .25(1 \mathrm{H}, \mathrm{s})$. $6.72(1 \mathrm{H}, \mathrm{s}):{ }^{1.3} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 39.9 .52 .0 .70 .3$. $98.4,100.5$. 106.3, 120.0. 128.3, 136.8. 138.6. 140.0. 147.1. 168.0: IR (neat. cm^{-1}) $3385,3256,2976.1688,1646$: MS (EI) Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{1}: \mathrm{NO}_{5}: 265.09$. Found: 265.00 .

1-(6-Aminobenzo[1,3|dioxol-5-yl)-3-methylbut-3-en-1ol (2p): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.75(3 \mathrm{H} . \mathrm{s}) .2 .43$ $(1 \mathrm{H}, \mathrm{dd}, J=4.14 \mathrm{~Hz} . J=13.6 \mathrm{~Hz}), 2.66(1 \mathrm{H} . \mathrm{dd}, J=9.96$ $\mathrm{Hz} . J=10.7 \mathrm{~Hz}) .3 .5(2 \mathrm{H} . \mathrm{brs}) .4 .75(1 \mathrm{H}$. dd. $J=3.96 \mathrm{~Hz}$.
$9.66 \mathrm{Hr}) .4 .87(1 \mathrm{H}, \mathrm{s}) .4 .93(1 \mathrm{H}, \mathrm{s}) .5 .81(2 \mathrm{H}, \mathrm{s}) .6 .25(1 \mathrm{H}$. s). $6.62(1 \mathrm{H}, \mathrm{s}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} 九 . \mathrm{CDCl}_{3}$) $\delta 22.3 .44 .0$. 70.1. 98.8 .100 .6 .107 .1 .113 .9 .119 .2 .139 .9 .142 .4 . 146.9. 147.1: IR (ncat. cm^{-1}) 3455. 3345. 2996. 2847: MS (EI) Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}: 221.10$. Found: 221.00 .

1-(3-Methoxy-2-nitrophenyl)but-3-en-1-ol (3a): ${ }^{1}$ H NMR $\left(300 \mathrm{MH} \not . \mathrm{CDCl}_{3}\right) \delta 2.56(2 \mathrm{H} . \mathrm{m}) .3 .67(3 \mathrm{H}, \mathrm{s}) .4 .72(1 \mathrm{H}$. $\mathrm{dd} . J=5.37 \mathrm{H} \not .8 .46 \mathrm{H} \%) .5 .12(1 \mathrm{H} . \mathrm{d} . J=9.2 \mathrm{H} \%) .5 .16(1 \mathrm{H}$. d. $J=17.0 \mathrm{H} \%) .5 .79(1 \mathrm{H} . \mathrm{m}), 6.7\left(0-6.74(3 \mathrm{H} . \mathrm{m}):{ }^{13} \mathrm{C}\right.$ NMR ($75 \mathrm{MH} \ldots \mathrm{CDCl}_{3}$) $\delta 39.7,55.5 .72 .6 .109 .3,117.2,118.5$. 119.3. 131.0. 133.5. 134.9. 147.5: IR (ncat. cm^{-1}) 3365 $(-\mathrm{OH}) .2907$ (aromatic $\mathrm{C}-\mathrm{H}) .1541 .1399(-\mathrm{N}=\mathrm{O})$.

1-(3-Methoxy-2-nitrophenyl)-2-methylbut-3-en-1-0l (3b): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MH} \approx \mathrm{CDCl}_{3}\right) \delta \mathrm{I} .15(3 \mathrm{H} . \mathrm{d} . J=6.7 \mathrm{H} \not) .2 .79$ $(\mathrm{lH} . \mathrm{m}) .3 .81(3 \mathrm{H} . \mathrm{s}) .4 .49(\mathrm{lH} . \mathrm{d} . J=7.2 \mathrm{H} /) .4 .95(\mathrm{lH} . \mathrm{d} . J$ $=8.9 \mathrm{H} \%) .5 .03(1 \mathrm{H} . \mathrm{d} . J=17.1 \mathrm{H} \%) .5 .71(\mathrm{lH} . \mathrm{m}) \cdot 6.65-6.72$ ($3 \mathrm{H}, \mathrm{m}$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \approx, \mathrm{CDCl}_{3}$) $\delta 15.0 .41 .7 .55 .4$. 78.2. 108.9. 114.6. 116.6. 120.4, 134.0. 140.5, 147.5, 154.2: IR (ncat. cm^{-1}) $3435,3395.3076 .2937,1501,1277$.

2-[2-Hydroxy-2-(3-methoxy-2-nitrophenyl)ethyl]acrylic acid methyl ester (3c): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \neq \mathrm{CDCl}_{3}$) $\delta 2.67$ $(1 \mathrm{H} . \mathrm{dd} . J=9 .(6) \mathrm{H} \% . J=14.0 \mathrm{H} \%) .2 .8 \mathrm{I}(\mathrm{IH} . \mathrm{dd} . J=3.63$ $\mathrm{H} / . J=14.0 \mathrm{H} \%) .3 .7(3 \mathrm{H} . \mathrm{s}) .3 .83(3 \mathrm{H} . \mathrm{s}) .4 .86(1 \mathrm{H} . \mathrm{dd} . J=$ $3.57 \mathrm{H} \not . J=9.06 \mathrm{H} /) .5 .68(1 \mathrm{H} . \mathrm{s}) .6 .23(1 \mathrm{H} . \mathrm{s}) .6 .70-6.80$ (2 H. overlap H). 6.81 ($1 \mathrm{H} . \mathrm{d} . J=7.2 \mathrm{H} /$): ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MH} \neq \mathrm{CDCl}_{3}\right) \delta 22.2 .43 .5,55.5 .70 .9$. 109.3. 113.6. 117.1. 119.2 . $126.9 .134 .6,142.5,147.5: \mathrm{IR}\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right) 3490$. 3390. 2744. 1496. 1297. 1222.

1-(3-Methoxy-2-nitrophenyl)-3-methylbut-3-en-1-ol (3d) ${ }^{\mathrm{l}} \mathrm{H}$ NMR $\left(300 \mathrm{MH} \not . . \mathrm{CDCl}_{3}\right) \delta \mathrm{I} .8 \mathrm{I}(3 \mathrm{H}$. s). 2.46 ($1 \mathrm{H} . \mathrm{dd} . J$ $=3.84 \mathrm{H} \not . J=14.0 \mathrm{H} \%) .2 .73(1 \mathrm{H} . \mathrm{dd} . J=10.0 \mathrm{H} / .13 .9 \mathrm{H} \%)$. $3.84(3 \mathrm{H} . \mathrm{s}) .3 .84(\mathrm{IH} . \mathrm{dd} . J=4.11 \mathrm{H} \not .9 .87 \mathrm{H} /$). $4.88(1 \mathrm{H}$. s). 4.93 (1 H. s). $6.68-6.76\left(3 \mathrm{H}\right.$. overlap): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \%$ CDCl_{3}) $\delta 22.2 .43 .5 .55 .5,70.9 .109 .3 .113 .6 .117 .1 .119 .2$. 126.9. 134.6. 142.5. 147.5. 154.2: IR (neat. cm^{-1}) 3176. 2907. $1501(-\mathrm{N}=\mathrm{O}) .1247(-\mathrm{N}=\mathrm{O})$.

Representative intramolecular cyclization procedure: Synthesis of 6a.

2-\{2-Hydroxy-2-[2-(p-toluenesulfonylamino phenyl|ethyl\}acrylic acid methyl ester (+a): To a stirred solution of $\mathbf{2 c}$ ($51.4 \mathrm{mg}, 0.23 \mathrm{mmol}$) in 3 mL of pyridine was added TsCl ($88.6 \mathrm{mg}, 0.46 \mathrm{mmol}$) under N_{2} atmosphere. The reaction mixture was stirred at room temperature for about 12 h . The mixture was poured into the cooled water. and extracted with methylene chloride. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$. concentrated and purified over silica gel to give $87.4 \mathrm{mg}(78 \%)$ of tosylate. ${ }^{1} \mathrm{H}$ NMR (CDCl3. 300 MHz) δ $2.33(3 \mathrm{H}, \mathrm{s}) .2 .47(2 \mathrm{H} . \mathrm{d}, J=6.48 \mathrm{~Hz}) .3 .35(1 \mathrm{H} . \mathrm{d} . J=3.18$ $\mathrm{Hz}) .3 .76(3 \mathrm{H} . \mathrm{s}) .4 .78(1 \mathrm{H} . \mathrm{mm}) .5 .44(1 \mathrm{H} . \mathrm{s}) .6 .15(1 \mathrm{H} . \mathrm{d} . J=$ $1.2 \mathrm{~Hz}) .6 .98-7.17(3 \mathrm{H}$, overlap H$) .7 .18(2 \mathrm{H}$. d. $J=8.01$ $\mathrm{Hz}) .7 .42(1 \mathrm{H}$, d. $J=7.95 \mathrm{~Hz}) .7 .67(2 \mathrm{H}$, d. $J=8.25 \mathrm{~Hz})$. $8.58(1 \mathrm{H}, \mathrm{s}){ }^{1.3} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 21.9 .41 .2 .52 .7$. $60.8,122.2$. 124.9. 127.5. 127.6, 128.7. 129.4. 130.0. 133.3. 135.5. 136.6. 137.4. 144.1: IR (neat. cm^{-1}) 3482.3238. 1718. 1710. 1340. 1158. 928.

2-\{2-Oxo-2-[2-(p-toluenesulfonylamino)phenyl|ethyl\} acrylicacid methyl ester (5a): To a stirred solution of ta
(33.6 mg .0 .0895 mmol) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. was added 20 mg of silica gel and PCC (38.6 mg .0 .179 mmol). After stirring for 16 h at room temperature, the reaction mixture was filtered through celite pad. The solvent was removed in vactw. The residuc was purified by flash chromatography over silica gel to yield $28 \mathrm{mg}(84 \%)$ of product. ${ }^{l} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} 300 \mathrm{MH} 九\right) \delta 2.19(3 \mathrm{H} . \mathrm{s}) .3 .87(3 \mathrm{H} . \mathrm{s}) .3 .98(2 \mathrm{H} . \mathrm{s})$. $5.63(1 \mathrm{H}, \mathrm{s}) .6 .4(\mathrm{lH}, \mathrm{s}) .7 .0-7.88(8 \mathrm{H}$. overlap H$) .11 .25$ ($1 \mathrm{H} . \mathrm{s}$): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3 .} 75 \mathrm{MH} /\right.$) $\delta 14.6 .43 .1 .52 .6 .119 .3$. 123.0. 124.9. 127.6. 129.3. 130.0. 131.6. 133.2. 134.4. 136.6. 140.6. 140.3. 167.1: IR (ncat. cm^{-1}) 3124. 1726. 1650. 1334. 1160.

2-[3-Oxo-1-(p-toluenesulfonyl)-2,3-dihydro- $\mathbf{1 H}$-indol-2-yljpropionic acid methyl ester (6a): To a stirred solution of $5 \mathrm{a}(63.6 \mathrm{mg} .0 .14 \mathrm{mmol})$ in 3 mL of methylene chloride was added $60 \mathrm{~mL}(0.34 \mathrm{mmol})$ of DIPEA. After stirring for 4 hour at r1. the reaction mixture was quenched by 1 mL of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried concentrated. and purified over silica gel to give 47 $\mathrm{mg}(88 \%)$ of dihy droindolone producl 6a. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$. $300 \mathrm{MH} \approx) \delta 1.26(3 \mathrm{H} . \mathrm{d} . J=9.03 \mathrm{H} \%) .2 .35(3 \mathrm{H} . \mathrm{s}) .3 .67$ $(1 \mathrm{H} . \mathrm{m}) .3 .73(3 \mathrm{H} . \mathrm{s}) .4 .22(\mathrm{lH} . \mathrm{d} . J=2.46 \mathrm{H} \%) .7 .20-8 . \mathrm{l}$ (8 H . overlap H of another isomer): ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} .75$ $\mathrm{MH} \%$) $\delta 11.6 .21 .9 .43 .4$. 52.6. 68.1. 117.6. 124.6. 125.2. 125.7. 127.8. 130.4. 130.5. 137.5. 145.6. 153.7. 173.7. 197.3: [R (ncat. cm^{-1}) 1724. 1602. 1364. 1174.: HRMS (El) Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}: 373.0984$. Found: 373.0991 .
2-[4-Chloro-3-0xo-1-(p-toluenesulfonyl)-2,3-dihydro-1H-indol-2-yl]propionic acid methỵl ester (6b): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} 300 \mathrm{MH} \not \approx\right) \delta 1.32(3 \mathrm{H} . \mathrm{d} . J=7.26 \mathrm{H} \nsucc) .2 .37(3 \mathrm{H} . \mathrm{s})$. $3.50(1 \mathrm{H} . \mathrm{m}) .3 .72(3 \mathrm{H} . \mathrm{s}) .4 .22(1 \mathrm{H} . \mathrm{d} . J=2.49 \mathrm{H} \%) .7 .13$ ($1 \mathrm{H} . \mathrm{d} . J=8.19 \mathrm{H} \not \subset$). $7.23(3 \mathrm{H}$. overlap of proton). $7.52-7.62$ (4 H. overlap of protons): ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3 .} .75 \mathrm{MH} \approx$) $\delta 11.4$. 21.5. 43.3. 52.2. 67.8. 115.2. 126.1. 127.4. 130.1. 132.1. 132.4. 136.9. 145.5. 154.6. 173.1. 194.0: IR (ncal. cm^{-1}) 1730. 1590. 1366. 1174.: HRMS (EI) Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{CINO}_{5} \mathrm{~S}: 409,0565$. Found: 409.0560 .
2-[5-Chloro-3-0xo-1-(p-toluenesulfonyl)-2,3-dihydro1 H -indol-2-yl]propionic acid methyl ester (6c): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 1.30(3 \mathrm{H}$, d. $J=6.48 \mathrm{~Hz}) .2 .37(3 \mathrm{H} . \mathrm{s})$. $3.52(1 \mathrm{H} . \mathrm{m}) .3 .71(3 \mathrm{H}, \mathrm{s}) .4 .15(1 \mathrm{H} . \mathrm{d} . J=2.64 \mathrm{~Hz}), 7.23-$ $8.06\left(7 \mathrm{H}\right.$, overlap with isomer respectively): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 12.1,21.9 .43 .8$. 52.7 . 68.5 . 118.9. 124.1. 127.8. 130.5, 131.2, 132.8. 137.6, 145.9. 151.9. 173.6, 196.1: IR (neat. cm^{-1}) 1728. 1602. 1366. 1174. 1130: HRMS (EI) Anal. Calcd. for $\mathrm{C}_{69} \mathrm{H}_{1}{ }_{8} \mathrm{CINO} 5 \mathrm{~S}: 407.0594$. Found: 407.0591.

2-Methyl-1-(p-toluenesulfonyl)-2,3-dihydro-1 H -quinolin4 -one (7d): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.26(3 \mathrm{H}$, d. $J=$ $6.45 \mathrm{~Hz}) .2 .23(1 \mathrm{H}$. d. $J=19.4 \mathrm{~Hz}) .2 .29(1 \mathrm{H}$. overlap), 2.38 $(3 \mathrm{H}, \mathrm{s}) .4 .89(1 \mathrm{H}, \mathrm{m}) .7 .21(2 \mathrm{H}, \mathrm{d} . J=6.3 \mathrm{~Hz}) .7 .29(2 \mathrm{H}$. overlap m), $7.55(2 \mathrm{H}$. d. $. J=12.9 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{t} . J=8.55$ $\mathrm{Hz}) .7 .91(1 \mathrm{H} . \mathrm{t} . J=8.28 \mathrm{~Hz}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta$ $19.5,21.5,41.9,51.8,125.3,125.6,126.3 .126 .8,127.0$. 130.0. 134.9. 136.5. 139.6. 144.4. 192.4.: IR (neat. cm^{-1}) 1688. 1350, 1168: HRMS (EI) Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$: 315.0929. Found: 315.0929.

6-Chloro-2-methyl-1-(p-toluenesulfonyl)-2,3-dihydro-

1 \boldsymbol{H}-quinolin-4-one (7e): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} .300 \mathrm{MH}$) δ $1.27(3 \mathrm{H} . \mathrm{d} . J=6.9 \mathrm{~Hz}) .2 .25(1 \mathrm{H} . \mathrm{d} . J=1.83 \mathrm{~Hz}) .2 .29(1 \mathrm{H}$. d. $J=5.52 \mathrm{H} \delta), 2.36(3 \mathrm{H} . \mathrm{s}), 4.87(1 \mathrm{H} . \mathrm{m}) .7 .23(2 \mathrm{H} . \mathrm{d} . J=$ $8.19 \mathrm{H} \%) .7 .51(2 \mathrm{H} . \mathrm{d} . J=6.15 \mathrm{H} \%) .7 .54(1 \mathrm{H} . \mathrm{d} . J=9.15$ $\mathrm{H} \%) .7 .87\left(1 \mathrm{H}\right.$. d. $J=8.01 \mathrm{~Hz}$) $.7 .88(1 \mathrm{H} . \mathrm{s}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MH} \ell\right) \delta 19.4,21.5,41.5,51.8 .77 .1 .126,1.126 .6$. 126.8. 127.8, 130.1. 131.6. 134,6. 136.2. 138.0. 144,6. 191.2: IR (neat. cm^{-1}) 1694. 1470. 1354. 1166.: HRMS (EI) Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClNO}_{3} \mathrm{~S}: 349.0539$. Found: 349.0539 .

2,3-Dimethỵl-1-(p-toluenesulfonyl)-2,3-dihydro-1 H -quinolin-4-one (7f): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}. $300 \mathrm{MH} \approx$) $\delta 1.05$ $(3 \mathrm{H} . \mathrm{d} . J=6.84 \mathrm{H} \delta) .1 .16(3 \mathrm{H} . \mathrm{d} . J=6.9 \mathrm{H} \neq) .2 .38(3 \mathrm{H} . \mathrm{s})$. $2.54(\mathrm{lH} . \mathrm{m}) .4 .79(\mathrm{lH} . \mathrm{m}) .7 .19$ (4 H. overlap). 7.57 ($\mathrm{IH} . \mathrm{t} . J$ $=9.15 \mathrm{H} \%) .7 .59(2 \mathrm{H} . \mathrm{d} . J=8.25 \mathrm{H} \%) .7 .90(\mathrm{lH} .1 . J=8.37$ $\mathrm{H} \%):{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 11.2,13.8 .21 .5 .44 .2$. 57.3. 124.8. 124.9. 124.99. 126.7, 127.2, 129.9. 134.6. 137.1. 139.7. 144.3. 195.2: [R (KBr. $\left.\mathrm{cm}^{-1}\right) 1684.1596 .1356 .1166:$ HRMS (EI) Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}: 329.1086$. Found: 329.1074.

6-Chloro-2,3-dimethỵl-1-(p-toluenesulfonyl)-2,3-dihỵdro1 H -quinolin-t-one (7g): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} .300 \mathrm{MH} \kappa\right) \delta$ $1.04(3 \mathrm{H} . \mathrm{d} . J=6.9 \mathrm{H} \%) . \mathrm{l}, 12(3 \mathrm{H} . \mathrm{d} . J=6.24 \mathrm{H} /) .2 .39(3 \mathrm{H}$. s). $2.48(1 \mathrm{H} . \mathrm{m}) .4 .76(\mathrm{lH} . \mathrm{m}) .7 .25(2 \mathrm{H} . \mathrm{d} . J=8.07 \mathrm{H} /)$. 7.49 ($1 \mathrm{H} . \mathrm{d} . ~ J=2.52 \mathrm{H} /$). 7.59 ($2 \mathrm{H} . \mathrm{d} . ~ J=8.25 \mathrm{H} \neq$). 7.87 (3H. overlap): ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}. $75 \mathrm{MH} 九$) δ II.5. 14.2. 22.0. 44.6. 57.8. 126.1. 126.9. 127.1. 127.2. 130.5. 131.5. 134.8. 137.2. 138.6. 145,0. 194,6: $\mathrm{IR}\left(\mathrm{KBr} \cdot \mathrm{cm}^{-1}\right) 1694$. 1594. 1354. 1164.: HRMS (EI) Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNO}_{3} \mathrm{~S}$: 363.0696 . Found: 363.0691 .

2,2-Dimethỵl-1-(p-toluenesulfonỵl)-2,3-dihydro-1 H -quinolin-4-one (7h): To a stirred solution of $\mathbf{5 h}(20.8 \mathrm{mg}$. 0.06 mmol) in 3 mL of methylene chloride was added 18 mL $(0,12 \mathrm{mmol})$ of DBU. After stirring for 50 h at reflux. the reaction mixture was quenched by 1 mL of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried. concentrated. and purified over silica gel to give 48 mg (70%) of the cyclized product $7 \mathrm{~h} .{ }^{\mathrm{J}} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3 .} .300$ $\mathrm{MHz}) \delta 1.46(6 \mathrm{H}, \mathrm{s}) .2 .29(2 \mathrm{H} . \mathrm{s}) .2 .42(3 \mathrm{H} . \mathrm{s}) .7 .26(2 \mathrm{H} . \mathrm{d}$. $J=7.6 \mathrm{H} /) .7 .44(2 \mathrm{H} . \mathrm{d} . J=7.54 \mathrm{~Hz}) .7 .56(\mathrm{IH} . \mathrm{d} . J=7.7$ $\mathrm{H} \%$). $7.70(1 \mathrm{H} . \mathrm{d} . J=8.6 \mathrm{H} \%) .7 .94(1 \mathrm{H} . \mathrm{s}))^{1.3} \mathrm{C} \mathrm{NMR}(\mathrm{CDCl} 3$. $75 \mathrm{MHz}) \delta 21.4,21.5 .27 .9 .48 .9 .60 .4,121.7,122.7,126.9$. 129.5. 130.7. 134.1. 142.7. 144.1. 194.1: IR (neat. cm^{-1}) 1690. 1598. 1354. 1162.: HRMS (EI) Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}: 329.1086$. Found: 329.1091 .

6-Chloro-2,2-dimethyl-1-(p-toluenesulfonyl)-2,3-dihydro1 H -quinolin-4-one (7i): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right) \dot{\delta} 1.4+$ $(6 \mathrm{H} . \mathrm{s}) .2 .25(2 \mathrm{H}, \mathrm{s}) .2 .41(3 \mathrm{H} . \mathrm{s}) .7 .24(2 \mathrm{H}, \mathrm{d}, J=7.56 \mathrm{~Hz})$. $7.43(2 \mathrm{H}$. d. $J=7.68 \mathrm{~Hz}) .7 .57(1 \mathrm{H}$. d. $J=7.71 \mathrm{~Hz}) .7 .70$ $(1 \mathrm{H} . \mathrm{d} . J=8.79 \mathrm{~Hz}) .7 .90(1 \mathrm{H} . \mathrm{s}){ }^{13} \mathrm{C}$ NMR (CDCl3. 75 $\mathrm{MHz}) \delta 22.0 .29 .7$. 30.0. 49.0. 60.9. 126.6. 127.6. 129.9. 130.0. 130.5. 132.3, 133.5, 134.4. 138.4. 141.6. 144.8. 193.3. IR (neat. cm^{-1}) 1692. 1466. 1356. 1164: HRMS (EI) Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClNO}_{2} \mathrm{~S}: 363.0696$. Found: 363.0691.

Acknowledgment. This work was supported by grants from "Critical Tecluology 21" of the Korea Ministry of Science and Tecluology

References

1. (a) Reddy: G. V: Rao. G. V.: Iyengar. D. S. Fetrohedron Lett. 1999, to. 3937. (b) For retiens see: i) Larock K. C. (Comprehensive Organic Transformatons: VCli: New York 1989: pp 4]1-415. ii) Kabalka, (j. W.: Vama, K. S. In Comprohomsive Organic Spmhesis: Trost. B. M.. Fleming. I.. Eds.: Pergamon Press: Oxtord. 1991: Vol. 8. pp 363-379. iii) Sauvé. G.: Rao. V. S. In Comprehensive Organic timhtional (hromp Fromsformations. Katriclay, A. R.: Meth-Cohn, O.: Rees, C. W.. Jids.: Pergamon Press: O.dord, 1995, Vol. 2, pp 737-817.
2. Jor reviews, see: (a) Li. C. I.: Chan. T. I. Orgaic Reaction in Agmeors Hedia: John Wiley \& Sons: New York. 1997. (b) Li. C. J. Tetroledron 1996. 52. 5643. (c) Chan. T. H.: Isaac. M. B. Pure

Appl. (Chem. 199G. 68. 919. (d) Lubineau. A.: Auge. J.: Quencau. Y. Swhthesis 1994. 741. (e) Lubineau. A.: Auge, J.: Queneau, Y. In Orgamic Sphthesis in Hater, (jrieco. P. A. . tid.: Blackie Academic \& Prolessional: London. 1998. (f) Paquette, I. A. In (freen (Themistry-Fronticr in Bonign (hunical Swhtheses and Precesses: Anastas. P. T.. Williamson. T. C.. Eds.: Ottord University Peess: New York. 1998. (g) Li. C. J. (hem. Rev. 1993. 93. 2023. (h) Li. C. J. Chan, I. H. Tetrahedron 1999. 55. 11149.
3. Moody, C. J. Pitts, M. P. Sphlett 1998, 1028.
4. I.ee J G.: Choi, K. I., Koh. HI. Y., Kim, Y. S.: Kang. Y. II.: Cho. Y. S. Swifhesis 2001. 1.81.
5. Cha. J. H.: Pac. A. N.: Choi. K. I.: Cho. Y. S.: Koh. H. Y.: Lce. E. J. (hem. Soc., Perkin Trans 12001.2079.

