DOI QR코드

DOI QR Code

Photophysical Efficiency Factors of Singlet Oxygen Generation from Core-modified Trithiasapphyrin Derivatives

  • Published : 2002.02.20

Abstract

The photophysical properties and the singlet oxygen generation efficiencies of meso-tetraphenyl-trithiasapphyrin $(S_3TPS)$ and meso-tetmkis(p-methoxy phenyl)-trithiasapphy rin ((p-MeO)-$S_3TPS$) have been investigated, utilizing steady-state and time-resolved spectroscopic methods to elucidate the possibility of their use as photosensitizers for photodynamic therapy (PDT). The observed photophysical properties were compared with those of other porphyrin-like photosensitizers in geometrical and electronic structural aspects, such as extended ${\pi}$ conjugation, structural distortion, and internal heavy atoms. The steady-state electronic absorption and fluorescence spectra were both red-shifted due to the extended ${\pi}$-conjugation. The fluorescence quantum yields were measured as very small. Even though intersystem crossing rates were expected to increase due to the increment of spin orbital coupling, the triplet quantum yields were measured as less than 0.15. Such characteristics can be ascribed to the more enhanced internal conversion rates compared with the intersystem crossing rates. Furthermore, the triplet state lifetimes were shortened to -1.0 ${\mu}s$ as expected. Therefore, the singlet oxygen quantum yields were estimated to be near zero due to the fast triplet state decay rates and the inefficient energy transfer to the oxygen molecule as well as the low triplet quantum yields. The low efficiencies of energy transfer to the oxygen molecule can be attributed to the lower oxidation potential and/or the energetically low lying triplet state. Such photophysical factors should be carefully evaluated as potential photosensitizers that have extended ${\pi}$-conjugation and heavy core atoms synthesized for red-shifted absorption and high triplet state quantum yields.

Keywords

References

  1. Maiya, B. G.; Cyr, M.; Harriman, A.; Sessler, J. L. J. Phys. Chem. 1990, 94, 3597 https://doi.org/10.1021/j100372a043
  2. Sessler, J. L.; Tvermoes, N. A.; Davis, J.; Anzenbacher Jr., P.; Jursikova, K.; Sato, W.; Seidel, D.; Lynch, V.; Black, C. B.; Try, A.; Andrioletti, B.; Hemmi, G.; Mody, T. D.; Magda, D. J.; Kral, V. Pure Appl. Chem. 1999, 71, 2009 https://doi.org/10.1351/pac199971112009
  3. Srinivasan, A.; Pushpan, S. K.; Kumar, M. R.; Mahajan, S.; Chandrashekar, T. K.; Roy, R.; Ramamurthy, P. J. Chem. Soc., Perkin Trans. 2 1999, 961
  4. Lisowski, J.; Sessler, J. L.; Lynch, V. Inorg. Chem. 1995, 34, 3567 https://doi.org/10.1021/ic00117a032
  5. Zenkevich, E.; Sagun, E.; Knyukshto, V.; Shulga, A.; Mironov, A.; Efremova, O.; Bonnett, R.; Songca, S. P.; Kassem, M. J. Photochem. Photobiol. B Biol. 1996, 33, 171 https://doi.org/10.1016/1011-1344(95)07241-1
  6. Shin, K.; Lim, C.; Choi, C.; Kim, Y.; Lee, C. Chem. Lett. 1999, 1331
  7. Thompson, R. B.; Frisoli, J. K.; Lakowicz, J. R. Anal. Chem. 1992, 64, 2075 https://doi.org/10.1021/ac00042a009
  8. Strickler, S. J.; Berg, R. A. J. Chem. Phys. 1962, 37, 814 https://doi.org/10.1063/1.1733166
  9. Lachish, D.; Infelta, P. P.; Gratzel, M. Chem. Phys. Lett. 1979, 62, 317 https://doi.org/10.1016/0009-2614(79)80187-6
  10. Angeli, N. G.; Lagorio, M. G.; Roman, E. A. S.; Dicelio, L. E. Photochem. Photobiol. 2000, 72, 49 https://doi.org/10.1562/0031-8655(2000)072<0049:MSCPOB>2.0.CO;2
  11. Darmanyan, A. P.; Arbogast, J. W.; Foote, C. S. J. Phys. Chem. 1991, 95, 7308 https://doi.org/10.1021/j100172a038
  12. Ha, J.-H.; Jung, G. Y.; Kim, M.-S.; Lee, Y. H.; Shin, K.; Kim, R.-Y. Bull. Korean Chem. Soc. 2001, 22, 63
  13. Iu, K.-K.; Ogilby, P. R. J. Phys. Chem. 1988, 92, 4662 https://doi.org/10.1021/j100327a021
  14. Iu, K.-K.; Ogilby, P. R. J. Phys. Chem. 1987, 91, 1611 https://doi.org/10.1021/j100290a064
  15. Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochemistry; Marcel Dekker: New York, U. S. A., 1993
  16. Abdel-Shafi, A. A.; Beer, P. D.; Mortimer, R. J.; Wilkinson, F. J. Phys. Chem. A 2000, 104, 192 https://doi.org/10.1021/jp991876z
  17. Wilkinson, F.; Abdel-Shafi, A. A. J. Phys. Chem. A 1999, 103, 5425 https://doi.org/10.1021/jp9907995
  18. Roitman, L.; Ehrenberg, B.; Nitzan, Y.; Kral, V.; Sessler, J. L. Photochem. Photobiol. 1994, 60, 421 https://doi.org/10.1111/j.1751-1097.1994.tb05127.x
  19. Shionoya, M.; Furuta, H.; Lynch, V.; Harriman, A.; Sessler, J. L. J. Am. Chem. Soc. 1992, 114, 5714 https://doi.org/10.1021/ja00040a034
  20. Gentemann , S.; Medforth, C. J.; Forsyth, T. P.; Nurco, D. J.; Smith, K. M.; Fajer, J.; Holten, D. J. Am. Chem. Soc. 1994, 116, 7363 https://doi.org/10.1021/ja00095a046
  21. Gentemann, S.; Medforth, C. J.; Ema, T.; Nelson , N. Y.; Smith, K. M.; Fajer, J.; Holten, D. Chem. Phys. Lett. 1995, 245, 441 https://doi.org/10.1016/0009-2614(95)01030-D
  22. Hill, R. L.; Gouterman, M.; Ulman, A. Inorg. Chem. 1982, 21, 1450 https://doi.org/10.1021/ic00134a037
  23. Turro, N. J. Modern Molecular Photochemistry, Benjamin/Cummings Publishing: Menlo Park, U. S. A., 1978; p 183
  24. 24. Darmanyan, A. P.; Lee, W.; Jenks, W. S. J. Phys. Chem. A 1999, 103, 2705 https://doi.org/10.1021/jp984292q
  25. Martire, D. O.; Jux, N.; Aramendia, P. F.; Negri, R. M.; Lex, J.; Braslavsky, S. E.; Schaffner, K.; Vogel, E. J. Am. Chem. Soc. 1992, 114, 9969 https://doi.org/10.1021/ja00051a032
  26. Schermann, G.; Schmidt, R.; Volcker, A.; Brauer, H.-D.; Mertes, H.; Franck, B. Photochem. Photobiol. 1990, 52, 741 https://doi.org/10.1111/j.1751-1097.1990.tb08675.x

Cited by

  1. Triplet Energy Transfers in Well-Defined Host–Guest Porphyrin–Carboxylate/Cluster Assemblies vol.55, pp.9, 2016, https://doi.org/10.1021/acs.inorgchem.6b00185
  2. A Spectroscopic Study on Singlet Oxygen Production from Different Reaction Paths Using Solid Inorganic Peroxides as Starting Materials vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1656
  3. Singlet oxygen‐responsive photorelease of tyramine vol.42, pp.11, 2021, https://doi.org/10.1002/bkcs.12385