DOI QR코드

DOI QR Code

Prenconcentration and Determination of Mercury (II) and Methylmercury in Waters by Immobilized 1,5-Diphenylcarbazone and Cold Vapor Atomic Absorption Spectrometry


Abstract

1,5-diphenylcarbazone was immobilized on sodium dodecyl sulfate coated alumina. The alumina particle was effectively used for collection of mercury(II) and methylmercury cations at sub-ppb level. The adsorbed mercury was eluted with l mol $L^{-1}$ of hydrobromic acid solution. The mercury(II) was then directly measured by cold vapor atomic absorption spectrometry utilizing tin (II) chloride where as the total mercury was determined after the oxidation of methylmercury into the inorganic mercury. The methylmercury concentration was calculated by the difference between the value of total mercury and mercury (II). Mercury (II) and methylmercury cations were completely recovered from water with a preconcentration factor of 100 (for 1 L solution.) Relative standard deviation at Hg L ${\mu}gL^{-1}$ level 1.7%(n=8) and the limit of detection was 0.11 ${\mu}gL^{-1}$. The procedure was applied to spring water, well water and seawater and accuracy was assessed through recovery experiments.

Keywords

References

  1. D'Itri, P. A.; D'Itri, M. Mercury Contamination: A Human Tragedy; John Wiley and Sons, Inc.: New York, 1977.
  2. Baird, C. Environmental Chemistry; W. H. Freeman and Company: 1999; pp 386-395.
  3. Lee, K. S.; Choi, H. S.; Kim, S. T.; Kim, Y. S. J. Korean Chem. Soc. 1991, 35, 4.
  4. Tanaka, H.; Morita, H.; Shimomura, S.; Okamato, K. Anal. Sci. 1993, 8, 2.
  5. Riddiford, A. C. Advance in Electrochmistry and Electrochmical Engineering; 1966; p 4.
  6. Gritzner, G.; Kata, J. Electrochim. Acta 1984, 29, 869. https://doi.org/10.1016/0013-4686(84)80027-4
  7. Zaporozhets, O.; Petruniock, N.; Sukhan, V. Talanta 1999, 50, 865. https://doi.org/10.1016/S0039-9140(99)00172-1
  8. Ma, W. X.; Liu, F.; Li, K. A.; Chen, W.; Tong, S. Y. Anal. Chim. Acta 2000, 416, 191. https://doi.org/10.1016/S0003-2670(00)00886-2
  9. Hafez, M. A. H.; Kenawy, I. M. M.; Akl, M. A.; Lashein, R. R. Talanta 2001, 53, 760.
  10. Pierce, T. B. Anal. Chim. 1961, 24, 146. https://doi.org/10.1016/0003-2670(61)80031-7
  11. Grote, M.; Kettrup, A. Anal. Chim. Acta 1985, 172, 223. https://doi.org/10.1016/S0003-2670(00)82610-0
  12. Howard, A. G.; Arbab-Zavar, M. H. Talanta 1979, 26, 895. https://doi.org/10.1016/0039-9140(79)80274-X
  13. Ide, S. Kitakyushu Kogyo Koto Semmon Gakko Kenkyu Hokoka, 12, 127: as citted Chem. Abst. 1984, 101, 116442d.
  14. Manzoori, J. L.; Sorouraddin, M. H.; Haji Shabani, A. M. J. Anal. At. Spectrom. 1998, 13, 305. https://doi.org/10.1039/a707520k
  15. Sjncheza, D. M.; Martin, F.; Morante, R.; Marin, J.; Munuera, M. L. Talanta 2000, 52, 671. https://doi.org/10.1016/S0039-9140(00)00416-1
  16. Mahmoud, M. E.; Osmana, M. M.; Amerb, M. E. Anal. Chim. Acta 2000, 415, 33. https://doi.org/10.1016/S0003-2670(00)00839-4
  17. Tanak, H.; Ghikama, M.; Haradu, A.; Ueda, T.; Yube, S. Talanta 1976, 23, 489. https://doi.org/10.1016/0039-9140(76)80140-3
  18. Emteborg, H.; Baxter, D. C.; Sharp, M.; Frech, W. Analyst 1995, 120, 69. https://doi.org/10.1039/an9952000069
  19. Huabin, F.; Xiang, R. J. Anal. Tox. 2000, 24, 704. https://doi.org/10.1093/jat/24.8.704
  20. Baba, Y.; Matsumra, N.; Shiomori, K.; Kawano, Y. Anal. Sci. 1998, 14, 687. https://doi.org/10.2116/analsci.14.687
  21. Wang, H. C.; Hwang, Y. C.; Hsith, C. J.; Kuo, M. S. Anal. Sci. 1998, 14, 983. https://doi.org/10.2116/analsci.14.983
  22. Mahmood, M. E. Anal. Chim. Acta 1999, 398, 297. https://doi.org/10.1016/S0003-2670(99)00429-8
  23. Blanco, R. M.; Villaneva, M. T.; Sjnchez, J. E.; Medela, A. S. Anal. Chim. Acta 2000, 419, 137. https://doi.org/10.1016/S0003-2670(00)01002-3
  24. Mahmood, M. E.; Gohar, G. A. Talanta 2000, 51, 77. https://doi.org/10.1016/S0039-9140(99)00249-0
  25. Balt, S.; Vandalen, G. Anal. Chim. Acta 1962, 27,188. https://doi.org/10.1016/S0003-2670(00)88475-5
  26. Hiraide, M.; Hori, J. Anal. Sci. 1999, 15, 1055. https://doi.org/10.2116/analsci.15.1055
  27. Koop, J. F.; Longbottom, M. C.; Lobring, L. B. Cold Vapor for Detrmining Mercury 1972, 64, 20.
  28. Annual Book of ASTM Standards, Part 31, Water Standard 1976, D3223-73, 343.
  29. Standard Methods for the Examination of Water and Wastewater, 14th ed.; 1975; p 156.
  30. Dadfarnia, S.; Green, I.; Mclood, C. W. Anal. Procc. 1994, 31, 61. https://doi.org/10.1039/ai9943100061
  31. Lee, T. H.; Mowrer, J. Anal. Chim. Acta 1988, 221, 259. https://doi.org/10.1016/S0003-2670(00)81962-5
  32. Hiraide, M.; Sorouraddin, M. H.; Kawaguchi, H. Anal. Sci. 1994, 10, 125. https://doi.org/10.2116/analsci.10.125

Cited by

  1. Preconcentration of Palladium in Aqueous Samples Using a Surfactant‐Coated Alumina Modified with Thioridazine · HCl and Its Determination by Atomic Absorption Spectrometry vol.37, pp.7, 2004, https://doi.org/10.1081/AL-120035910
  2. Determination of Mercury in Environmental Samples by Using Water Exchangeable Liquid-Liquid Microextraction as Green Extraction Method Couple with Cold Vapor Technique vol.227, pp.6, 2016, https://doi.org/10.1007/s11270-016-2863-6
  3. ) ion selective electrode based on poly-o-toluidine–zirconium phosphoborate vol.6, pp.4, 2016, https://doi.org/10.1039/C5RA23284H
  4. Rapid and sensitive spectrofluorimetric determination of trace amounts of Hg(II) with o-vanillin-8-aminoquinoline vol.62, pp.8, 2007, https://doi.org/10.1134/S1061934807080084
  5. Selective solid phase extraction and preconcentration of ultra-trace inorganic mercury in water samples using 2,6-dimethyl-morpholine dithiocarbamate vol.99, pp.1, 2019, https://doi.org/10.1080/03067319.2018.1560434
  6. Highly Selective and Sensitive Preconcentration of Mercury Ion and Determination by Cold Vapor Atomic Absorption Spectroscopy vol.39, pp.6, 2006, https://doi.org/10.1080/00032710600622167
  7. Formazan-Containing Solid-Phase Reagent Indicator Systems for Environmental Analysis vol.88, pp.12, 2002, https://doi.org/10.1134/s1070363218120423