DOI QR코드

DOI QR Code

Correlation of Chemical Shifts with Substituent Parameters in N-Benzyl Derivatives of Pyrrole,3a,7a-Dihydroindole,and Indole Esters


Abstract

Series of m- and p-substituted benzyl derivatives of pyrrole, tetramethyl 1-benzyl-3a,7a-dihydroindole-2,3,3a,4-tetracarboxylate, and trimethyl 1-benzylindole-2,3,4-tricarboxylate were prepared and their 13C NMR spectra were obtained in 0.1 M solutions of chloroform-d. Both single substituent parameter and dual substituent parameter analyses were carried out to correlate the substituent chemical shifts. The ${\beta}$ carbon of the indole series showed the most profound substituent effect dependence as well as the best correlation. The results are explained by the hyperconjugation of the benzyl methylene group.

Keywords

References

  1. Craik, D. J.; Brownlee, R. T. C. Prog. Phys. Org. Chem. 1983, 14, 1. https://doi.org/10.1002/9780470171936.ch1
  2. Slater, C. D.; Robinson, C. N.; Bies, R.; Bryan, D. W.; Chang, K.; Hill, A. W.; Moore, W. H., Jr.; Otey, T. G.; Popperlreiter, M. L.; Reisser, J. R.; Stablein, G. E.; Waddy, V. P. III; Wilkinson, W. O.; Wray, W. A. J. Org. Chem. 1985, 50, 4125. https://doi.org/10.1021/jo00221a031
  3. Suezawa, H.; Yuzuri, T.; Hirota, M.; Ito, Y.; Hanada, Y. Bull. Chem. Soc. Jpn. 1990, 63, 328. https://doi.org/10.1246/bcsj.63.328
  4. Yuzuri, T.; Suezawa, H.; Hirota, M. Bull. Chem. Soc. Jpn. 1994, 67, 1664. https://doi.org/10.1246/bcsj.67.1664
  5. Lee, C. K.; Yu, J. S.; Park, J. S. Bull. Korean Chem. Soc. 2000, 21, 49.
  6. Lee, C. K.; Jun, J. H.; Yu, J. S. J. Heterocyclic Chem. 2000, 37, 15. https://doi.org/10.1002/jhet.5570370104
  7. Acheson, R. M.; Vernon, J. M. J. Chem. Soc. 1962, 1142.
  8. Pretsch, E.; Buhlman, P.; Affolter, C. Structure Determination of Organic Compounds; Springer: Berlin, Germany, 2000; p 109.
  9. Carr, R. M.; Norman, R. O. C.; Vernon, J. M. J. Chem. Soc. Perkin Trans. I 1980, 156. https://doi.org/10.1039/p19800000156
  10. Ruff, F.; Csizmadia, I. G. Organic Reactions Equilibria, Kinetics and Mechanism; Elsevier: Amsterdam, 1994: p 164.
  11. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry; Part A: Structure and Mechanism, 4th Ed.; Kluwer Academic/Plenum Pub.: New York, 2000; p 208.
  12. Robinson, C. N.; Stablein, G. E.; Slater, C. D. Tetrahedron 1990, 46, 335. https://doi.org/10.1016/S0040-4020(01)85418-1
  13. Bromilow, J.; Brownlee, R. T. C.; Craik, D. J.; Fiske, P. R.; Rowe, J. E.; Sedek, M. J. Chem. Soc. Perkin Trans. II 1981, 753.
  14. Ehrenson, S.; Brownlee, R. T. C.; Taft, R. W. Prog. Phys. Org. Chem. 1973, 10, 1. https://doi.org/10.1002/9780470171899.ch1

Cited by

  1. Infrared and nuclear magnetic resonance properties of benzoyl derivatives of five-membered monoheterocycles and determination of aromaticity indices vol.40, pp.5, 2002, https://doi.org/10.1002/jhet.5570400504
  2. Use of Correlation of 1H and 13C Chemical Shifts of N-Arylsuccinanilic Acids,N-Arylsuccinimides, N-Arylmaleanilic Acids, and N-Arylmaleimides with the Hammett Substituent Constan vol.30, pp.10, 2009, https://doi.org/10.5012/bkcs.2009.30.10.2351
  3. Substituent effect study on the experimental 13C NMR chemical shifts of 3-(substituted phenyl)-3a,4,8,8a-tetrahydro-1,3-dioxepino[5,6-d] [1,2] isoxazoles vol.1193, pp.None, 2002, https://doi.org/10.1016/j.molstruc.2019.04.121
  4. Synthesis and substituent effect study on 13C NMR chemical shifts of 4-(substitue-phenyl)-6-methyl-3-phenyl-4H-1,2,4-oxadiazin-5(6H)-one vol.1250, pp.p2, 2002, https://doi.org/10.1016/j.molstruc.2021.131787