DOI QR코드

DOI QR Code

Conformational Investigations of HMPAO Isomers and Their Zinc(II) Complexes


Abstract

Isomers based on the RS and EZ geometrical isomerism of the neutral, deprotonated species of HMPAO and their complexes with zinc(Ⅱ) ion have been investigated by semiempirical AM1 optimization method. The Hartree-Fock energies on AM1 geometries o f HMPAO species were calculated with HF/6-31G* methods. Twenty-two isomers of the neutral and twenty isomers of the deprotonated species of HMPAO have been found. The presence of four EE-series isomers of both zinc(Ⅱ) complexes with the neutral and deprotonated HMPAO have been expected and the SREE typical isomer of both types of complexes is the most stable isomer. Energies of complexation of zinc(Ⅱ)/HMPAO isomers with AM1 geometries were calculated by HF/ 6-31G*method. Due to the complexations with zinc(Ⅱ), the structural reorganizations of some isomers of the neutral HMPAO have been occurred. The optimized geometrical parameters of the related conformations have been discussed in terms of their stabilities and existences.

Keywords

References

  1. Stelter, P.; Junik, R.; Krzyminiewski, R.; Gembicki, M.; Sowinski,J. Nucl. Med. Commun. 2001, 22, 857. https://doi.org/10.1097/00006231-200108000-00003
  2. Mariani, G.; Carletto, M.; Vitali, P.; Erba, P.; Villa, G.; Girtler,N.; Rodari, M.; Delmonte, M.; Taddei, G.; Rodriguez, G.;Mariani, G. J. Nucl. Med. 2001, 42(5), 45.
  3. Fukushima, K.;Hayashida, K.; Sugimura, K. J. Nucl. Med. 2001, 42(5), 405.
  4. Kao, C. H.; Lan, J. L.; ChangLai, S. P.; Liao, K. K.; Yen, R. F.;Chieng, P. U. Eur. J. Nucl. Med. 2001, 26(2), 129. https://doi.org/10.1007/s002590050368
  5. Ding, H.-J.; Huang, Y.-F.; Tzeng, C.-C.; Wei, L.-M.; Yeh, S.-J.Bioorg. Med. Chem. Lett. 1999, 9(22), 3199. https://doi.org/10.1016/S0960-894X(99)00557-0
  6. Jeong, J. M.; Lim, J. I.; Chang, Y. S.; Son, M.; Kim, W. B.; Cho,J.-H.; Oh, C. H.; Lee, D. S.; Chung, J.-K.; Lee, M.-C. J. LabelledCompd. Radiopharm. 1999, S42:1, s573.
  7. Larsson, A.; Skoog, I.; Aevarsson, O.; Arlig, A.; Jacobsson, L.;Larsson, L.; Ostling, S.; Wikkelso, C. Nucl. Med. Commun. 2001,22, 741. https://doi.org/10.1097/00006231-200107000-00003
  8. Jackson, G. E.; Nakani, B. S. J. Chem. Soc. Dalton Trans. 1996,1373.
  9. Dewar, M.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4499. https://doi.org/10.1021/ja00455a049
  10. Davis, L. P. et. al. J. Comput. Chem. 1981, 2, 433. https://doi.org/10.1002/jcc.540020412
  11. Dewar, M.J. S.; McKee, M. L.; Rzepa, H. S. J. Am. Chem. Soc. 1978, 100,3607. https://doi.org/10.1021/ja00479a058
  12. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F. J. Am.Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/ja00299a024
  13. Dewar, M. J. S.; Reynolds, C. H.J. Comput. Chem. 1986, 2, 140.
  14. Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc.1980, 102, 939. https://doi.org/10.1021/ja00523a008
  15. Gordon, M. S.; Binkley, J. S.; Pople, J. A.;Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797. https://doi.org/10.1021/ja00374a017
  16. Pietro, W. J.; Francl, M. M.; Hehre, W. J.; Defrees, D. J.; Pople, J.A.; Binkley, J. S. J. Am. Chem. Soc. 1982, 104, 5039. https://doi.org/10.1021/ja00383a007
  17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.;Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.;Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe,M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J.L.; Replogle, E. S.; Martin, R. L.; Fox, D. J.; Binkley, J. S.;Defress, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.;Gonzalez, C.; Pople, J. A. Gaussian 94W, Revision D.1; GaussianInc.: Pittsburgh, PA, 1995.
  18. Boys, S. F.; Bernardi, J. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  19. Makowski, M.; Raczyska, E. D.; Chmurzyski, L. J. Phys. Chem.A 2001, 105, 869. https://doi.org/10.1021/jp002458t
  20. ConQuest Version 1.2; CCDC, 2001.
  21. Yazal, J. E.; Pang, Y.-P. J. Phys. Chem. B 1999, 103, 8773. https://doi.org/10.1021/jp991787m
  22. Lodeiro, C.; Parola, A. J.; Pina, F.; Bazzicalupi, C.; Bencini, A.;Bianchi, A.; Giorgi, C.; Masotti, A.; Valtancoli, B. InorganicChemistry 2001, 40, 2968. https://doi.org/10.1021/ic001381k
  23. Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Giorgi, C.; Fusi, V.;Valtancoli, B.; Bernardo, M. A.; Pina, F. Inorganic Chemistry1999, 38, 3806. https://doi.org/10.1021/ic981374k

Cited by

  1. A DFT investigation on molecular structures of semicarbazone complexes with Co(II), Ni(II) and Zn(II) and reaction energies of their complexation vol.17, pp.1, 2006, https://doi.org/10.1007/s11224-006-9027-z
  2. A DFT study of molecular structures and tautomerizations of 2-benzoylpyridine semicarbazone and picolinaldehyde N-oxide thiosemicarbazone and their complexations with Ni(II), Cu(II), and Zn(II) vol.18, pp.6, 2007, https://doi.org/10.1007/s11224-007-9258-7
  3. Conformational investigation of benzylhydroxamamide, its oxotechnetium(V) complexes and determination of their reaction energies vol.676, pp.1, 2002, https://doi.org/10.1016/j.theochem.2004.02.039
  4. A DFT investigation of conformational geometries and interconversion equilibria of phenylthiosemicarbazone and its complexation with zinc vol.10, pp.5, 2002, https://doi.org/10.1007/s00894-004-0217-6
  5. Conformational investigation of N,N′-propylene bis(benzohydroxamamide), its oxotechnetium(v) and oxorhenium(v) complexes and determination of their reaction energies vol.755, pp.1, 2002, https://doi.org/10.1016/j.theochem.2005.07.024