DOI QR코드

DOI QR Code

Energy Relaxation Dynamics of Excited Triplet States of Directly Linked Zn(II)Porphyrin Arrays

  • Song, Nam-Woong (Laser Metrology Laboratory, Korea Research Institute of Standards and Science) ;
  • Cho, Hyun-Sun (Center for Ultrafast Optical Characteristics Control and Department of Chemistry, Yonsei University) ;
  • Yoon, Min-Chul (Center for Ultrafast Optical Characteristics Control and Department of Chemistry, Yonsei University) ;
  • Aratani, Naoki (Department of Chemistry, Graduate School of Science, Kyoto University) ;
  • Osuka, Atsuhiro (Department of Chemistry, Graduate School of Science, Kyoto University) ;
  • Kim, Dong-Ho (Center for Ultrafast Optical Characteristics Control and Department of Chemistry, Yonsei University)
  • Published : 2002.02.20

Abstract

The energy relaxation dynamics of the lowest excited singlet and triplet states of the Zn(II)porphyrin monomer and its directly linked arrays were comparatively investigated with increasing the number of porphyrin moieties. While the fluorescence decay rates and quantum yields of the porphyrin arrays increased with the increase of porphyrin units, their triplet-triplet (T-T) absorption spectra and decay times remained almost the same. The difference in the trends of energy relaxation dynamics between the excited singlet and triplet states has been discussed in view of the electronic orbital configurations.

Keywords

References

  1. Gouterman, M.; Holten, D.; Lieberman, S. Chem. Phys. 1977, 25, 139 https://doi.org/10.1016/0301-0104(77)87070-5
  2. Chang, C. K. J. Heterocycl. Chem. 1977, 14, 1285
  3. Ichimura, K. Chem. Lett. 1977, 641
  4. Kagan, N. E.; Mauzerall, D.; Merrifield, R. B. J. Am. Chem. Soc. 1977, 99, 5484 https://doi.org/10.1021/ja00458a045
  5. Collman, J. P.; Prodolliet, J. W.; Leidner, C. R. J. Am. Chem. Soc. 1986, 108, 2916 https://doi.org/10.1021/ja00271a021
  6. Collman, J. P.; Chong, A. O.; Jameson, G. B.; Oakley, R. T.; Rose, E.; Schmittou, E. R.; Ibers, J. A. J. Am. Chem. Soc. 1981, 103, 516 https://doi.org/10.1021/ja00393a007
  7. Konishin, S.; Hoshino, M.; Imamura, M. J. Phys. Chem. 1982, 86, 4888 https://doi.org/10.1021/j100222a011
  8. Brookfield, R. L.; Ellul, H.; Harriman, A. J. Chem. Soc., Faraday Trans. 2 1985, 81, 1837 https://doi.org/10.1039/f29858101837
  9. Kadish, K. M.; Moninot, G.; Hu, Y.; Dubois, D.; Ibnlfassi, A.; Barbe, J.-M.; Guilard, R. J. Am. Chem. Soc. 1993, 115, 8153 https://doi.org/10.1021/ja00071a028
  10. Kim, Y. H.; Jeong, D. H.; Kim, D.; Jeoung, S. C.; Cho, H. S.; Kim, S. K.; Aratani, N.; Osuka, A. J. Am. Chem. Soc. 2001, 123, 76 https://doi.org/10.1021/ja0009976
  11. Aratani, N.; Osuka, A.; Kim, D.; Kim, Y. H.; Jeong, D. H. Angew. Chem. 2000, 39, 1458 https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1458::AID-ANIE1458>3.0.CO;2-E
  12. Lee, M.; Kim, D. J. Opt. Soc. Korea 1990, 52, 1
  13. Park, Y.-T.; Song, N. W.; Hwang, C.-G; Kim, K.-W.; Kim, D. J. Am. Chem. Soc. 1997, 119, 10677 https://doi.org/10.1021/ja970425u
  14. Gouterman, M. J. Chem. Phys. 1959, 30, 1139 https://doi.org/10.1063/1.1730148
  15. Spellane, P. J.; Gouterman, M.; Antipas, A.; Kim, S.; Liu, Y. C. Inorg. Chem. 1980, 19, 386 https://doi.org/10.1021/ic50204a021
  16. Osuka, A.; Shimidzu, H. Angew. Chem., Int. Ed. Engl. 1997, 36, 135 https://doi.org/10.1002/anie.199701351
  17. Yoshida, N.; Shimidzu, H.; Osuka, A. Chem. Lett. 1998, 55
  18. Kasha, M.; Rawls, H. R.; El-Bayoumi, M. Pure Appl. Chem. 1965, 11, 371 https://doi.org/10.1351/pac196511030371
  19. Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138 https://doi.org/10.1016/0022-2852(61)90236-3
  20. Weiss, C.; Kobayashi, H.; Gouterman, M. J. Mol. Spectrosc. 1965, 16, 415 https://doi.org/10.1016/0022-2852(65)90132-3
  21. Li, X.-Y.; Czernuszewicz, R. S.; Kincaid, J. R.; Su, Y. O.; Spiro, T. G. J. Phys. Chem. 1990, 94, 31 https://doi.org/10.1021/j100364a007
  22. Kuhn, H. J. Chem. Phys. 1970, 53, 101 https://doi.org/10.1063/1.1673749
  23. de Boer S.; Wiersma, D. A. Chem. Phys. Lett. 1990, 165, 45 https://doi.org/10.1016/0009-2614(90)87010-O
  24. Scheblykin, I. G.; Bataiev, M. M.; Van der Auweraer, M.; Vitukhnovsky, A. G. Chem. Phys. Lett. 2000, 316, 37 https://doi.org/10.1016/S0009-2614(99)01252-X
  25. Pekkarinen, L.; Linschitz, H. J. Am. Chem. Soc. 1960, 82, 2407 https://doi.org/10.1021/ja01495a001
  26. Gouterman, M. J. Chem. Phys. 1960, 33, 1523 https://doi.org/10.1063/1.1731436
  27. Rodriguez, J.; Kirmaier, C.; Holten, D. J. Am. Chem. Soc. 1989, 111, 6500 https://doi.org/10.1021/ja00199a004
  28. Walters, V. A.; de Paula, J. C.; Jackson, B.; Nutaitis, C.; Hall, K.; Lind, J.; Cardozo, K.; Chandran, K.; Raible, D.; Phillips, C. M. J. Phys. Chem. 1995, 99, 1166 https://doi.org/10.1021/j100004a016
  29. Walters, V. A.; de Paula, J. C.; Babcock, G. T.; Leroi, G. E. J. Am. Chem. Soc. 1989, 111, 8300 https://doi.org/10.1021/ja00203a053
  30. Reed, R. A.; Purrello, R.; Prendergast, K.; Spiro, T. G. J. Phys. Chem. 1991, 95, 9720 https://doi.org/10.1021/j100177a024

Cited by

  1. Localized Emitting State and Energy Transfer Properties of Quadrupolar Chromophores and (Multi)Branched Derivatives vol.116, pp.34, 2012, https://doi.org/10.1021/jp305407s
  2. Control and Switching of Aromaticity in Various All-Aza-Expanded Porphyrins: Spectroscopic and Theoretical Analyses vol.117, pp.4, 2017, https://doi.org/10.1021/acs.chemrev.6b00313
  3. Molecular Dyads Comprising Metalloporphyrin and Alkynylplatinum(II) Polypyridine Terminal Groups for Use as a Sensitizer in Dye-Sensitized Solar Cells vol.20, pp.11, 2014, https://doi.org/10.1002/chem.201304051
  4. Photoinduced charge transfer in porphyrin-C60 oligomer vol.53, pp.2, 2010, https://doi.org/10.1007/s11426-010-0042-y
  5. A comparative study of one- and two-photon absorption properties of meso-meso singly, meso-β doubly and meso-meso β-β β-β triply linked ZnII-porphyrin oligomers vol.804, pp.1, 2002, https://doi.org/10.1016/j.theochem.2006.08.055
  6. Mesomeso linked corroles vol.2007, pp.28, 2007, https://doi.org/10.1039/b703279j
  7. A new meso-meso directly-linked corrole-porphyrin-corrole hybrid: synthesis and photophysical properties vol.4, pp.26, 2002, https://doi.org/10.1039/c4ra01229a
  8. Two-photon absorption in a conformationally twisted D-p-A oligomer: a synergic photosensitizing approach for multiphoton lithography vol.2, pp.37, 2014, https://doi.org/10.1039/c4tc00841c