DOI QR코드

DOI QR Code

The Orientation of CO in Heme Proteins Determined by Time-Resolved Mid-IR Spectroscopy: Anisotropy Correction for Finite Photolysis of an Optically Thick Sample


Abstract

A systematic way of determining the equilibrium orientation of carbon monoxide (CO) in heme proteins using time-resolved polarized mid-IR spectroscopy is presented. The polarization anisotropy at pump-probe delay time of zero in the limit of zero photolysis and the angular distrbution function of CO are required to obtain the equilibrium orientation of CO. An approach is developed for determining the polarization anisotropy in the zero-photolysis limit from the anisotropy measured under finite photolysis conditions in an optically thick sample where the fraction of molecules photolyzed decreased as the pump pulse passes through and is absorbed by the sample. This approach is verified by measuring the polarization anisotropy of CO of carbonmonoxy myoglobin at various levels of photolysis. This method can be readily applied to other photoselection experiments determining precise angle between transition dipoles.

Keywords

References

  1. Springer, B. A.; Sligar, S. G.; Olson, J. S.; Phillips, G. N., Jr. Chem. Rev. 1994, 94, 699. https://doi.org/10.1021/cr00027a007
  2. Collman, J. P.; Brauman, J. I.; Halbert, T. R.; Suslick, K. S. Proc. Natl. Acad. Sci. U. S. A. 1976, 73, 3333. https://doi.org/10.1073/pnas.73.10.3333
  3. Antonini, E.; Brunori, M. Hemoglobin and Myoglobin in Their Reactions with Ligands; North-Holland Publishing Company: London, 1971.
  4. Coburn, R. F. Ann. N. Y. Acad. Sci. 1970, 174, 11. https://doi.org/10.1111/j.1749-6632.1970.tb49768.x
  5. Kuriyan, J.; Wilz, S.; Karplus, M.; Petsko, G. A. J. Mol. Biol. 1986, 192, 133. https://doi.org/10.1016/0022-2836(86)90470-5
  6. Peng, S. M.; Ibers, J. A. J. Am. Chem. Soc. 1976, 98, 8032. https://doi.org/10.1021/ja00441a025
  7. Collman, J. P. ; Gagne, R. R.; Reed, C. A.; Robinson, W. T.; Rodley, G. A. Proc. Natl. Acad. Sci. U. S. A. 1974, 71, 1326. https://doi.org/10.1073/pnas.71.4.1326
  8. Jameson, G. B.; Rodley, G. A.; Robinson, W. T.; Gagne, R. R.; Reed, C. A.; Collman, J. P. Inorg. Chem. 1978, 17, 850. https://doi.org/10.1021/ic50182a012
  9. Jameson, G. B.; Molinaro, F. S.; Ibers, J. A.; Collman, J. P.; Brauman, J. I.; Rose, E.; Suslick, K. S. J. Am. Chem. Soc. 1980, 102, 3224. https://doi.org/10.1021/ja00529a055
  10. Phillips, S. E. V. J. Mol. Biol. 1980, 142, 531. https://doi.org/10.1016/0022-2836(80)90262-4
  11. Caughey, W. S. Ann. N. Y. Acad. Sci. 1970, 174, 148. https://doi.org/10.1111/j.1749-6632.1970.tb49781.x
  12. Stryer, L. Biochemistry; W. H. Freeman and company: San Francisco, 1988.
  13. Ray, G. B.; Li, X.-Y.; Ibers, J. A.; Sessler, J. L.; Spiro, T. G. J. Am. Chem. Soc. 1994, 11 6 , 162. https://doi.org/10.1021/ja00080a019
  14. Hu, S.; Vogel, K. M.; Spiro, T. G. J. Am. Chem. Soc. 1994, 11 6 , 11187. https://doi.org/10.1021/ja00103a056
  15. Lim, M.; Jackson, T. A.; Anfinrud, P. A. Science 1995, 269, 962. https://doi.org/10.1126/science.7638619
  16. Kachalova, G. S.; Popov, A. N.; Bartunik, H. D. Science 1999, 284, 473. https://doi.org/10.1126/science.284.5413.473
  17. Spiro, T. G.; Kozlowski, P. M. Acc. Chem. Res. 2001, 34, 137. https://doi.org/10.1021/ar000108j
  18. Albrecht, A. C. J. Mol. Spec. 1961, 6, 84. https://doi.org/10.1016/0022-2852(61)90234-X
  19. Ansari, A.; Szabo, A. Biophys. J. 1993, 64, 838. https://doi.org/10.1016/S0006-3495(93)81445-0
  20. Ivanov, D.; Sage, J. T.; Keim, M.; Powell, J. R.; Asher, S. A.; Champion, P. M. J. Am. Chem. Soc. 1994, 11 6 , 4139. https://doi.org/10.1021/ja00088a084
  21. Hansen, P. A.; Moore, J. N.; Hochstrasser, R. M. Chem. Phys. 1989, 131, 49. https://doi.org/10.1016/0301-0104(89)87080-6
  22. Moore, J. N.; Hansen, P. A.; Hochstrasser, R. M. Chem. Phys. Lett. 1987, 138, 110. https://doi.org/10.1016/0009-2614(87)80351-2
  23. Moore, J. N.; Hansen, P. A.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 5062. https://doi.org/10.1073/pnas.85.14.5062
  24. Ormos, P.; Braunstein, D.; Frauenfelder, H.; Hong, M. K.; Lin, S. L.; Sauke, T. B.; Young, R. D. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 8492. https://doi.org/10.1073/pnas.85.22.8492
  25. Locke, B.; Lian, T.; Hochstrasser, R. M. Chem. Phys. 1991, 158, 409. https://doi.org/10.1016/0301-0104(91)87080-F
  26. Rothberg, L. J.; Roberson, M.; Jedju, T. M. Proc. SPIE-Int. Soc. Opt. Eng. 1991, 1599, 309.
  27. Braunstein, D. P. ; Chu, K.; Egeberg, K. D.; Frauenfelder, H.; Mourant, J. R.; Nienhaus, G. U.; Ormos, P. ; Sligar, S. G.; Springer, B. A.; Young, R. D. Biophys. J. 1993, 65, 2447. https://doi.org/10.1016/S0006-3495(93)81310-9
  28. Lian, T.; Locke, B.; Kitagawa, T.; Nagai, M.; Hochstrasser, R. M. Biochemistry 1993, 32, 5809. https://doi.org/10.1021/bi00073a013
  29. Locke, B.; Lian, T.; Hochstrasser, R. M. Chem. Phys. 1995, 190, 155. https://doi.org/10.1016/0301-0104(94)00360-M
  30. McMahon, M. T.; deDios, A. C.; Godbout, N.; Salzmann, R.; Laws, D. D.; Le, H.; Havlin, R. H.; Oldfield, E. J. Am. Chem. Soc. 1998, 120, 4784. https://doi.org/10.1021/ja973272j
  31. Anfinrud, P. A.; Lim, M.; Jackson, T. A. Proc. SPIE-Int. Soc. Opt. Eng. 1994, 2138, 107.
  32. Lim, M.; Jackson, T. A.; Anfinrud, P. A. J. Chem. Phys. 1995, 102, 4355. https://doi.org/10.1063/1.469484
  33. Eaton, W. A.; Hofrichter, J. Methods Enzymol. 1981, 76, 175. https://doi.org/10.1016/0076-6879(81)76126-3
  34. Lim, M.; Jackson, T. A.; Anfinrud, P. A. J. Phys. Chem. 1996, 100, 12043. https://doi.org/10.1021/jp9536458
  35. Lim, M.; Jackson, T. A.; Anfinrud, P. A. unpublished material.
  36. Albani, J.; Alpert, B. Chem. Phys. Lett. 1986, 131, 147. https://doi.org/10.1016/0009-2614(86)80533-4
  37. Henry, E. R. Biophys. J. 1993, 64, 869. https://doi.org/10.1016/S0006-3495(93)81447-4

Cited by

  1. Modelling Multi-Pulse Population Dynamics from Ultrafast Spectroscopy vol.6, pp.3, 2011, https://doi.org/10.1371/journal.pone.0017373
  2. Protein Conformation-Controlled Rebinding Barrier of NO and Its Binding Trajectories in Myoglobin and Hemoglobin at Room Temperature vol.116, pp.20, 2012, https://doi.org/10.1021/jp300176q
  3. Transient IR spectroscopy and ab initio calculations on ESIPT in 3-hydroxyflavone solvated in acetonitrile vol.14, pp.43, 2012, https://doi.org/10.1039/c2cp41077j
  4. Radical Cation in the Flavoenzyme TrmFO vol.139, pp.33, 2017, https://doi.org/10.1021/jacs.7b04586
  5. Structural Dynamics of Myoglobin Probed by Femtosecond Infrared Spectroscopy of the Amide Band vol.24, pp.10, 2002, https://doi.org/10.5012/bkcs.2003.24.10.1470
  6. Exploring Fine Structures of Photoactive Yellow Protein in Solution Using Wide-Angle X-ray Scattering vol.25, pp.11, 2002, https://doi.org/10.5012/bkcs.2004.25.11.1676
  7. Conformational Dynamics of Heme Pocket in Myoglobin and Hemoglobin vol.26, pp.1, 2002, https://doi.org/10.5012/bkcs.2005.26.1.151
  8. Effects of Solvent Viscosity on Conformational Dynamics of Heme-pocket in Myoglobin and Hemoglobin vol.27, pp.11, 2002, https://doi.org/10.5012/bkcs.2006.27.11.1825
  9. Multiply Excited Vibration of Carbon Monoxide in the Primary Docking Site of Hemoglobin Following Photolysis from the Heme vol.1, pp.14, 2002, https://doi.org/10.1021/jz1006324
  10. Polarization Dependent Time-Resolved Infrared Spectroscopy and Its Applications vol.29, pp.1, 2016, https://doi.org/10.1063/1674-0068/29/cjcp1512246
  11. Theory of two-dimensional spectroscopy with intense laser fields vol.154, pp.24, 2002, https://doi.org/10.1063/5.0051435