DOI QR코드

DOI QR Code

Chemical Vapor Deposition of Ga2O3 Thin Films on Si Substrates

  • Kim, Doo-Hyun (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Yoo, Seung-Ho (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Chung, Taek-Mo (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • An, Ki-Seok (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Yoo, Hee-Soo (Department of Chemistry, Chungbuk National University) ;
  • Kim, Yun-Soo (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • Published : 2002.02.20

Abstract

Amorphous $Ga_2O_3$ films have been grown on Si(100) substrates by metal organic chemical vapor deposition (MOCVD) using gallium isopropoxide, $Ga(O^iPr)_3$, as single precursor. Deposition was carried out in the substrate temperature range 400-800 $^{\circ}C$. X-ray photoelectron spectroscopy (XPS) analysis revealed deposition of stoichiometric $Ga_2O_3$ thin films at 500-600 $^{\circ}C$. XPS depth profiling by $Ar^+$ ion sputtering indicated that carbon contamination exists mostly in the surface region with less than 3.5% content in the film. Microscopic images of the films by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed formation of grains of approximately 20-40 nm in size on the film surfaces. The root-mean-square surface roughness from an AFM image was ${\sim}10{\AA}$. The interfacial layer of the $Ga_2O_3$/Si was measured to be ${\sim}35{\AA}$ thick by cross-sectional transmission electron microscopy (TEM). From the analysis of gaseous products of the CVD reaction by gas chromatography-mass spectrometry (GC-MS), an effort was made to explain the CVD mechanism.

Keywords

References

  1. Tu, L. W.; Lee, Y. C.; Lee, K. H.; Lai, C. M.; Lo, I.; Hsieh, K. Y.; Hong, M. Appl. Phys. Lett. 1999, 75, 2038 https://doi.org/10.1063/1.124908
  2. Hong, M.; Lu, Z. H.; Kwo, J.; Kortan, A. R.; Mannaerts, J. P.; Krajeswki, J. J.; Hsieh, K. C.; Chou, L. J.; Cheng, K. Y. Appl. Phys. Lett. 2000, 76, 312 https://doi.org/10.1063/1.125730
  3. Xiao, T.; Kitai, A. H.; Liu, G.; Nakua, A.; Barbier, J. Appl. Phys. Lett. 1998, 72, 3356 https://doi.org/10.1063/1.121602
  4. Miyata, T.; Nakatani, T.; Minami, T. J. Lumin. 2000, 87-89, 1183 https://doi.org/10.1016/S0022-2313(99)00589-X
  5. Fleischer, M.; Meixner, H. Sensors and Actuators B 1992, 6, 257 https://doi.org/10.1016/0925-4005(92)80065-6
  6. Fleischer, M.; Meixner, H. Sensors and Actuators B 1991, 4, 437 https://doi.org/10.1016/0925-4005(91)80148-D
  7. Lang, A. C.; Fleischer, M.; Meixner, H. Sensors and Actuators B 2000, 66, 80 https://doi.org/10.1016/S0925-4005(99)00347-0
  8. Macri, P. P.; Enzo, S.; Sberveglieri, G.; Groppelli, S.; Perego, C. Appl. Surf. Sci. 1993, 65/66, 277 https://doi.org/10.1016/0169-4332(93)90671-W
  9. Fleischer, M.; Kornely, S.; Weh, T.; Frank, J.; Meixner, H. Sensors and Actuators B 2000, 69, 205 https://doi.org/10.1016/S0925-4005(00)00513-X
  10. Fleischer, M.; Meixner, H. J. Vac. Sci. Technol. A 1999, 17, 1866 https://doi.org/10.1116/1.581906
  11. Passlack, M.; Hong, M.; Mannaerts, J. P. Appl. Phys. Lett. 1996, 68, 1099 https://doi.org/10.1063/1.115725
  12. Morosanu, C. E. Thin Films by Chemical Vapour Deposition; Elsevier: Amsterdam, 1990
  13. de Keijser, M.; Dormans, G. J. M. MRS Bull. 1996, 21(6), 37
  14. Ballarin, B.; Battiston, G. A.; Benetollo, F.; Gerbasi, R.; Porchia, M.; Favretto, D.; Traldi, P. Inorg. Chim. Acta 1994, 217, 71 https://doi.org/10.1016/0020-1693(93)03743-T
  15. Battiston, G. A.; Gerbasi, R.; Porchia, M.; Bertoncello, R.; Caccavale, F. Thin Solid Films 1996, 279, 115 https://doi.org/10.1016/0040-6090(95)08161-5
  16. Miinea, L.; Suh, S.; Bott, S. G.; Liu, J.-R.; Chu, W.-K.; Hoffman, D. M. J. Mater. Chem. 1999, 9, 929 https://doi.org/10.1039/a808460b
  17. Valet, M.; Hoffman, D. M. Chem. Mater. 2001, 13, 2135 https://doi.org/10.1021/cm0014177
  18. Reinmann, R.; Tanner, A. Z. Naturforsch. B 1965, 20, 524
  19. Passlack, M.; Schubert, E. F.; Hobson, W. S.; Hong, M.; Moriya, N.; Chu, S. N. G.; Konstadinidis, K.; Mannaerts, J. P.; Schnoes, M. L.; Zydzik, G. J. J. Appl. Phys. 1995, 77, 686 https://doi.org/10.1063/1.359055
  20. Carli, R.; Bianchi, C. L. Appl. Surf. Sci. 1994, 74, 99 https://doi.org/10.1016/0169-4332(94)90104-X
  21. Wolter, S. D.; Luther, B. P.; Waltemyer, D. L.; Onneby, C.; Mohney, S. E.; Molnar, R. J. Appl. Phys. Lett. 1997, 70, 2156 https://doi.org/10.1063/1.118944
  22. Ishikawa, T.; Ikoma, H. Jpn. J. Appl. Phys. 1993, 32, L607

Cited by

  1. films on Si(111) substrates vol.103, pp.4, 2004, https://doi.org/10.1179/096797804225018741
  2. Enhanced photoluminescence of Ga2O3:Dy3+ phosphor films by Li+ doping vol.97, pp.3, 2005, https://doi.org/10.1063/1.1849829
  3. ALD and MOCVD of Ga2O3 Thin Films Using the New Ga Precursor Dimethylgallium Isopropoxide, Me2GaOiPr vol.17, pp.7-9, 2011, https://doi.org/10.1002/cvde.201106879
  4. Electronic structure and optical properties of Sn2x Ga2(1−x)O3 compounds vol.54, pp.3, 2011, https://doi.org/10.1007/s11433-010-4231-7
  5. Growth characteristics and film properties of gallium doped zinc oxide prepared by atomic layer deposition vol.31, pp.3-4, 2013, https://doi.org/10.1007/s10832-013-9848-2
  6. Versatile in Situ Gas Analysis Apparatus for Nanomaterials Reactors vol.86, pp.17, 2014, https://doi.org/10.1021/ac5022858
  7. Room Temperature Atomic Layer Deposition of Gallium Oxide Investigated by IR Absorption Spectroscopy vol.E98.C, pp.5, 2015, https://doi.org/10.1587/transele.E98.C.382
  8. Epitaxial gallium oxide on a SiC/Si substrate vol.58, pp.9, 2016, https://doi.org/10.1134/S1063783416090201
  9. plasma enhanced atomic layer deposition vol.46, pp.47, 2017, https://doi.org/10.1039/C7DT03427J
  10. on III-nitrides for deep-UV opto-electronics vol.112, pp.2, 2018, https://doi.org/10.1063/1.5010683
  11. Influence of the synthesis conditions on gallium sulfide thin films prepared by modulated flux deposition vol.42, pp.8, 2009, https://doi.org/10.1088/0022-3727/42/8/085108
  12. Thin Films vol.2009, pp.8, 2009, https://doi.org/10.1002/ejic.200801062
  13. Plasma enhanced atomic layer deposition of Ga2O3thin films vol.2, pp.45, 2002, https://doi.org/10.1039/c4ta05007j
  14. Influence of oxygen precursors and annealing on Fe3O4 films grown on GaN templates by metal organic chemical vapor deposition vol.32, pp.5, 2014, https://doi.org/10.1116/1.4894179
  15. Structural and optical properties of β-Ga2O3 thin films grown by plasma-assisted molecular beam epitaxy vol.34, pp.2, 2002, https://doi.org/10.1116/1.4942045
  16. Optimizing GaxOy Growth Tendency of 3D Structures on Different Substrates through the MOCVD Technique vol.8, pp.7, 2002, https://doi.org/10.1149/2.0451907jss
  17. Growth and characterization of β-Ga2O3 thin films on different substrates vol.125, pp.10, 2002, https://doi.org/10.1063/1.5061794
  18. Low-temperature growth of gallium oxide thin films by plasma-enhanced atomic layer deposition vol.38, pp.2, 2002, https://doi.org/10.1116/1.5134800
  19. β-Ga2O3 on Si (001) grown by plasma-assisted MBE with γ-Al2O3 (111) buffer layer: Structural characterization vol.11, pp.4, 2002, https://doi.org/10.1063/5.0044923
  20. Substrate orientation dependent current transport mechanisms in β-Ga2O3/Si based Schottky barrier diodes vol.39, pp.3, 2002, https://doi.org/10.1116/6.0000858
  21. Recent advances in the growth of gallium oxide thin films employing various growth techniques-a review vol.54, pp.45, 2021, https://doi.org/10.1088/1361-6463/ac1af2