One-Pot Synthesis of $\mathbf{2 H}$-Pyrans by Indium(III) Chloride-Catalyzed Reactions. Efficient Synthesis of Pyranocoumarins, Pyranophenalenones, and Pyranoquinolinones

Yong Rok Lee, ${ }^{*}$ Do Hoon Kim, Jae-Jin Shim, Seog K. Kim, ${ }^{\dagger}$ Jung Hag Park, ${ }^{\dagger}$ Jin Soon Cha, ${ }^{\dagger}$ and Chong-Soon Lee ${ }^{\ddagger}$
School of Chemical Engineering and Technology, Yeungnam Unwersity, Kyongsan 712-749, Korea
"Deparment of Chemistry, Yeungnom University, Kyongsan 7I--749, Korea
*Depatment of Biochemistry, Yeungnam University, Kvongsan 7/2-749. Korea
Received April 18, 2002

Abstract

An efficient synthesis of $2 / /$-pyrans is achieved by indium (III) chloride-catalyzed reactions of 1,3 -dicarbonyl compounds with a variety of $\alpha \beta$-unsaturated aldehydes in moderate yields. This method has been applied to the synthesis of pyranocoumarins, pyranophenalenones, and pyranoquinolinone alkaloids.

Keywords : Indium(III) chloride, Pyranocoumarins, Pyranophenalenones, Pyranoquinolinones.

Introduction

$2 H-\mathrm{P}^{3} y r a n s$ are distributed in nature as a key unit of natural products. 'They have a variety of interesting biological activities and potential medical applications. ${ }^{2}$ Although several synthetic approaches of 2 H -pyrans derivatives have been reported, general and efficient approaches still remain scarce. ${ }^{3}$ In previous work, the many steps and low yields which were required for preparation have prompted our research for better preparation of 2 H -pyrans.

Indium(III) chloride has been used as an efficient catalyst in organic synthesis. ${ }^{4}$ Also, it has been proven that indium (III) chloride is a powerful reagent which is stable in water. ${ }^{5}$ Indium(III) chloride-catalyzed Mukaiyama aldol reaction," Mannich-type reaction, ${ }^{56.7}$ Diels-Alder reaction, ${ }^{8}$ aziridination reaction, ${ }^{\text {, }}$ Fridel-Crafts reaction. ${ }^{(6)}$ Barbier reaction, ${ }^{1 "}$ and Biginelli reaction ${ }^{12}$ have been already reported by many groups. However, indium(III) chloride-catalyzed reaction of 1,3-carbonyl compounds to α, β-unsaturated aldehydes has not been examined. We report here a convenient and efficient one-pot synthesis of 2 H -pyrans by a tandem Knoevenagelelectrocyclic reaction. The strategy that we have developed begins with the reaction of cyclic 1.3-dicarbonyl compounds 1-8 (Figure 1) and α, β-unsaturated aldehydes in the presence of indium(III) chloride.

Results and Discussion

Reaction of 5,5-dimethyl-1,3-cyclohexanedione (2) with

$3 \mathrm{R}_{3}=\mathrm{H}$
$4 \mathrm{R}_{3}=\mathrm{CH}_{3}$ $5 \mathrm{R}_{3}=\mathrm{Cl}$

$6 \mathrm{R}_{4}=\mathrm{H}$

8

2

reflux 4 h

Scheme I
crotonaldehyde in refluxing acetonitrile for 4 h in the presence of $50 \mathrm{~mol} \%$ of indium(III) chloride afforded 2 H -pyran 9 in a 70% yield (Scheme 1). The formation of 9 is supported by the observation of a peak in the IR spectrum at $1651 \mathrm{~cm}^{-1}$ (enone $\mathrm{C}=\mathrm{O}$) and the expected chemical shifts associated with two vinylic protons at $\delta 6.40(J=10.0 \mathrm{~Hz})$ and at $\delta 5.24(J=10.0 \mathrm{~Hz}) \mathrm{ppm}$ in the ${ }^{\prime} \mathrm{H}$ NMR spectrum. This reaction provides a concise synthetic route into the substituted $2 H$-pyrans as a one-pot reaction.

Next, additional reactions of 1.3-cyclohexanediones with several α, β-unsaturated aldehydes in the presence of indium (III) chloride were attempted. The results are summarized in Table 1. In entries 1-5, reactions with crotonaldehyde, 3-methyl-2-butenal, and trans-2-methyl-2-butenal afforded cyloadducts $\mathbf{1 0 - 1 4}$ in $50-61 \%$ yields. Interestingly, in the case of 1 -cyclohexene-1-carboxaldehyde with a ring system (entries 6-7), the expected pyrans $\mathbf{1 5 - 1 6}$ were also produced in 74 and 64% yields, respectively.

Next, reaction of 4-hydroxycoumarins $3-5$ with α, β unsaturated aldehydes was examined. The results are summarized in Table 2. Treatment of 4-hydroxycoumarin 3 with crotonaldehyde afforded the biologically interesting pyranocoumarin 17 in 59% yield (entry 1). Compound 17 has been clearly shown to be angular by their spectral analysis and by comparison with reported data in the literature. ${ }^{1.3}$ Reactions with other α, β-unsaturated aldehydes afforded pyranocoumarins 18-24 in 40-79\% yields (entries 2-8). These reactions provide a rapid synthetic route toward pyranocoumarin derivatives, which have been widely found in nature. ${ }^{14}$

In order to extend the utility of these reactions, additional reactions were examined starting from 3-hydroxy-1 H -

Table 1. Reaction of 1.3 -cyelohexanediones and $\alpha . \beta$-unsaturated aldehydes
Intry
phenalen-I-one (8). Reaction with crotonaldehyde afforded pyranophenalenone $\mathbf{2 5}$ in 48% yield (entry 1). Other similar results are summarized in Table 3. These reactions also provide a rapid synthetic route toward biologically interesting pyranophenalenone derivatives.
As an application of this methodology, one-pot synthesis of pyranoquinolinone alkaloids were investigated. Flindersine (29) and N-methylflindersine (30) have been primarily isolated from Rutaccous plants, Fagara heit-iil, ${ }^{15}$ Geijera balansae, ${ }^{16}$ Haplophylum saveolens, ${ }^{17}$ Atalantia roxburghiana. ${ }^{18}$ Micromelwn minutum, ${ }^{19}$ and Zanthoxvium coco. ${ }^{20}$ N -Mcthylllindersine (30) was also isolated from antifeedant active species. ${ }^{21}$ Fagara chalvbea, F. hostil, .Xwocarpus granatum, and Orixa japonica. ${ }^{22}$ The steams and leaves of O. japonica were formerly used in Japan as an insecticide for livestock. ${ }^{22}$ Reaction of 4-hydroxy-2(1/H)-quinolone (6) with 3-methyl-2-butenal in the presence of $50 \mathrm{~mol} \%$ of indium(III) chloride for 4 h at reflux in acetonitrile gave

Table 2. Reaction of 4-hydroxycoumarins and α, β-unsaturated aldehy des

flindersine (29) in 41% (Scheme 2). Similarly, reaction of 7 with 3-methyl-2-butenal afforded N-methylliindersine (30)

Scheme 2

Scheme 3

Table 3. Reaction of 3-hydrost-1 H-phenalen-1-one and α, β unsalurated aldehydes

Entry	1.3 -dicarbonsl compound	$\alpha-\beta$-unsalurated aldehyde	Product	Yield $\left({ }^{\circ}{ }^{\circ}\right)$

in 40% yield. Spectral data of our synthetic materials are in agreement with those reported in the literature. ${ }^{2}$
Although the exact mechanism of the reaction is still not clear. it is best described as shown in Scheme 3. The dimedone 2 first attacks aldehy de to yield the alcohol 31. which is dehydrated on heating in acidic condition to give 32 . The intermediate 32 then undergoes electrocyclic reaction to give cycloadduct 9 .

Experimental Section

All experiments were carried out under a nitrogen atmosphere. Merck precoated silica gel plates (Art. 5554) with fluorescent indicator were used for analytical TLC. Flash column chromatography was performed using silica gel 9385 (Merck). Melting points were determined with microcover glasses on a Fisher-Johns apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Model ARX (300 MHz) spectrometer. IR spectra were recorded on a JASCO FTIR 5300 spectrophotometer. Elemental analysis and HRMS spectra were obtained by Yeungnam University Instrumental Analysis Center and Korea Basic Science lnstitute
General Procedure for the Synthesis of $\mathbf{2 H}$-Pyrans. To a solution of 1.3 -dicarbonyl compound (1.0 mmol) and α, β unsaturated aldehyde (2.0 mmol) in acetonitrile (10 mL) was added InCl_{3} (111 mg .0 .5 mmol) at room temperature. The reaction mixture was refluxed for 4 h and then cooled to room temperature. Saturated sodium bicarbonate was added and the solution was extracted with ethyl acetate. Eraporation of solvent and purification by column chromatography on silica gel give products.
2,7,7-Trimethyl-2,6,7,8-tetrahydro-chromen-5-one (9) ${ }^{3 f}$.

Reaction of 5.5-dimethyl-1.3-cyclohexanedione (2) (140 mg. 1 mmol) with crotonaldahyde (140 mg .2 nmol) afforded $9(135 \mathrm{mg}, 70 \%)$ as a liquid: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 6.40$ ($1 \mathrm{H} . \mathrm{d}, J=10.0 \mathrm{~Hz}$), $5.24(\mathrm{lH} . \mathrm{dd}, J=10.0,3.1 \mathrm{~Hz}$) , 4.96 $(1 \mathrm{H} . \mathrm{m}) .2 .31-2.17(4 \mathrm{H} . \mathrm{m}) .1 .36(3 \mathrm{H}, \mathrm{d} . J=6.5 \mathrm{~Hz}) .1 .03$ (3H. s), 1.02 (3H. s): IR (neat) 2960. 1651. 1633. 14222. $1408,1370.122+.1140 .1054,947 \mathrm{~cm}^{-1}$.

2-Methyl-2,6,7,8-tetrahydro-chromen-5-one (10) ${ }^{3 f}$. Reaction of 1.3 -cyclohexanedione (1) ($112 \mathrm{mg}, 1 \mathrm{mmol}$) with crotonaldahy de (140 mg .2 mmol) afforded 10 (82 mg . 50%) as a liquid: 'H NMR (300 MHz) $\delta 6.43(1 \mathrm{H}, \mathrm{d}, J=$ $10.0 \mathrm{~Hz}) .5 .26(1 \mathrm{H} . \mathrm{dd} . J=10.0 .3 .0 \mathrm{~Hz}) .4 .99(\mathrm{HH} . \mathrm{m}) .2 .42-$ $2.34(4 \mathrm{H} . \mathrm{m}) .2 .02-1.90(2 \mathrm{H}, \mathrm{m}) .1 .38(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}): \mathbb{R}$ (neat) 2933, 1650. 1639. 1612, 1454, 1403. 1256. 1232. 1192, 1136, $1068,931 \mathrm{~cm}^{-1}$.
2,2-Dimethyy 1 -2,6,7,8-tetrahydro-chromen-5-one (11) ${ }^{31}$. Reaction of 1.3 -cyclohexanedione (1) (112 mg. 1 mmol) with 3 -methyl-2-butenal (168 mg .2 mmol) afforded 11 (105 mg. 59%) as a liquid: ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 6.38(1 \mathrm{H} . \mathrm{d} . J=$ $10.0 \mathrm{~Hz}) .5 .21(1 \mathrm{H}, \mathrm{d} . J=10.0 \mathrm{~Hz}) .2 .39-2.34(4 \mathrm{H} . \mathrm{m}) .1 .99-$ $1.90(2 \mathrm{H} . \mathrm{m}) .1 .37(6 \mathrm{H} . \mathrm{s})$; \mathbb{R} (neat) 2926. 1645. 1611, $1455,1399.1375 .1266,1188,1130.1010,905 \mathrm{~cm}^{-1}$.

2,2,7,7-Tetramethyl-2,6,7,8-tetrahydio-chromen-5-one (12). Reaction of 5,5-dimethyl-1,3-cyclohexamedione (2) (140 mg. 1 mmol) with 3 -methyl-2-butenal (168 mg .2 mmol) afforded 12 ($109 \mathrm{mg}, 53 \%$) as a solid: $\mathrm{mp} 38-40^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 6.36(1 \mathrm{H} . \mathrm{d} . J=9.9 \mathrm{~Hz}), 5.19(1 \mathrm{H} . \mathrm{d} . J=$ $9.9 \mathrm{~Hz}), 2.23(2 \mathrm{H}, \mathrm{s}) .2 .21(2 \mathrm{H} . \mathrm{s}) .1 .35(6 \mathrm{H}, \mathrm{s}), 1.03(6 \mathrm{H} . \mathrm{s})$: IR (KBr) 2959, 2870, 1645. 1633. 1586. 1454, 1+16, 1351. 1324, 1299, 1251, 1206, 1131. 1090. 1047,976.928 $\mathrm{cm}^{-1}:$ HRMS m / z (M^{\prime}) calcd for $\mathrm{C}_{13} \mathrm{H}_{1 \S} \mathrm{O}_{2}: 206.1306$. Found: 206.1306.

2,3-Dimethỵi-2,6,7,8-tetrahydro-chromen-5-one (13). Reaction of 1.3 -cyclohexanedione (1) (112 mg .1 mmol) with trans-2-methyl-2-butenal (168 mg .2 mmol) afforded 13 (93 mg. 52%) as a liquid: ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 6.10$ ($\mathrm{IH} . \mathrm{s}$). $4.77(1 \mathrm{H}, \mathrm{q} . J=6 .+\mathrm{Hz}), 2.35-2.27(4 \mathrm{H} . \mathrm{m}) .1 .92-$ $1.65(2 \mathrm{H} . \mathrm{m}) .1 .65(3 \mathrm{H} . \mathrm{s}), 1.27(3 \mathrm{H} . \mathrm{d} . J=6.4 \mathrm{~Hz}): \mathbb{R}$ (neat) 2940 . 1645, 1615. 1452. 1403. 1383. 1234. 1193.1169. 1070. $1010.931 \mathrm{~cm}^{-1}:$ HRMS m/2 (M) calcd for $\mathrm{C}_{11} \mathrm{H}_{1} . \mathrm{O}_{2}: 178.0994$. Found: 178.0991.

2,3,7,7-Tetramethyl-2,6,7,8-tetrahydro-chromen-5-one (14). Reaction of 5.5 -dimethyl-1.3-cyclohexanedione (2) (140 mg .1 mmol) with trans-2-methyl-2-butenal (168 mg .2 mmol) afforded 14 ($126 \mathrm{mg} .61 \%$) as a solid: $\mathrm{mp} 80-82^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (300 MHz$) \delta 6.16(1 \mathrm{H} . \mathrm{s}) .4 .80(1 \mathrm{H} . \mathrm{q} . J=6.4 \mathrm{~Hz})$. $2.28-2.20(+\mathrm{H} . \mathrm{m}) .1 .70(3 \mathrm{H}, \mathrm{s}) .1 .31(3 \mathrm{H} . \mathrm{d} . J=6.4 \mathrm{~Hz})$. $1.05(3 \mathrm{H} . \mathrm{s}), 1.02(3 \mathrm{H} . \mathrm{s}): \mathrm{IR}(\mathrm{KBr}) 2963.16+5.1634 .1622$. 1558. 1471. 1455. 1418. 1404. 1387. 1373. 1260. 1238. 1067, $1030.877 \mathrm{~cm}^{-1}:$ HRMS m/2 (M) caled for $\mathrm{C}_{1: 3} \mathrm{H}_{18} \mathrm{O}_{2}$: 206.1306. Found: 206.1305.

2,3,4,5,6,7,8,10a-Octahydro-xanthen-1-one (15). Reaction of 1.3 -cyclohexanedione (1) (112 mg .1 mmol) with $1-$ cylohexene-1-carboxaldehyde (220 mg .2 mmol) afforded 15 ($152 \mathrm{mg} .74 \%$) as a liquid: ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 6.05$ $(\mathrm{lH} \mathrm{~s}) ..4 .9 \mathrm{I}(\mathrm{lH} . \mathrm{dd} . J=10.9 .+.9 \mathrm{~Hz}) .2 .35-2.30(6 \mathrm{H}, \mathrm{m})$. 1.95-1.24 (8H. m): IR (neat) 29+2, 16+5. 1518. 1404. 1171 . 1073. 1019. 939. $869 \mathrm{~cm}^{-1}$: HRMS m/z (M') calcd for

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}: 20+1150$. Found: $20+1150$.

3,3-Dimethyl-2,3,+5,6,7,8,10a-octahy dro-xanthen-1-one (16). Reaction of 5.5 -dimetlyyl-1,3-cyclohexanedione (2) (140 mg . 1 mmol) with l-cylohexene-1-carboxaldehy de (220 mg . 2 mmol) afforded 16 ($149 \mathrm{mg} .64 \%$) as a liquid: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 6.05(1 \mathrm{H}, \mathrm{s}) .4 .92(\mathrm{lH} . \mathrm{dd}, J=10.9 .4 .9 \mathrm{~Hz})$. $2.37-2.05(6 \mathrm{H}, \mathrm{m}) .1 .95-1.20(6 \mathrm{H} . \mathrm{m}), 1.0+(3 \mathrm{H}, \mathrm{s}), 1.03$ ($3 \mathrm{H} . \mathrm{s}$): IR (neat) $2955,16+4.1630$. 1617. 1404. 1258. 1231, 1146. 1074. $10+1.1008,945 \mathrm{~cm}^{-1}$: HRMS $\mathrm{m} / \mathrm{Z}\left(\mathrm{M}^{\prime}\right)$ calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}: 232.1463$. Found: 232.1464.

2-Methyl-2H-pyrano[3,2-c]chromen-5-one (17). Reaction of 4 -hydroxycoumarin (3) ($162 \mathrm{mg}, 1 \mathrm{mmol}$) with crotonaldahyde (140 mg .2 mumol) afforded 17 (127 mg . 59%) as a solid: mp $55-56{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 7.75$ $(1 \mathrm{H} . \mathrm{dd}, J=7.8 .1 .6 \mathrm{~Hz}) .7 .5(\mathrm{lH}, \mathrm{m}) .7 .28-7.23(2 \mathrm{H}, \mathrm{m})$. $6.55(1 \mathrm{H} . \mathrm{d}, J=10.0 \mathrm{~Hz}) .5 .55(1 \mathrm{H}, \mathrm{dd}, J=10.0 .3 .2 \mathrm{~Hz})$. $5.27(1 \mathrm{H}, \mathrm{m}) .1 .52(3 \mathrm{H} . \mathrm{d}, J=6.6 \mathrm{~Hz})$: $\mathrm{R}(\mathrm{KBr}) 3069.2982$. 2930, 1707, 1642. 1609, 1566, 1493. 1454. 1418, 1377. 1327. 1271. 1217. 1192, 1165. 1113. 1040, 1019. $922 \mathrm{~cm}^{-1}:$ HRMS $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{\prime}\right)$ calcd for $\mathrm{C}_{13} \mathrm{H}_{4} \mathrm{O}_{3}: 214.0630$. Found: 214.0631 .

2,9-Dimethyl-2H-pyrano[3,2-c|chromen-5-one (18). Reaction of 4 -hydroxy-(3 -methyl-coumarin (4) ($176 \mathrm{mg}, 1 \mathrm{mmol}$) with crotonaldahyde ($140 \mathrm{mg}, 2 \mathrm{mmol}$) afforded 18 (133 $\mathrm{mg} .58 \%$) as a solid: mp $123-125^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (300 MHz) δ 7.53 ($\mathrm{lH} . \mathrm{s}$). 7.29 ($\mathrm{lH} . \mathrm{d} . ~ J=8.3 \mathrm{~Hz}$). 7.16 ($\mathrm{lH} . \mathrm{d} . ~ J=8.3$ $\mathrm{Hz}) .6 .56(1 \mathrm{H}, \mathrm{d} . J=9.1 \mathrm{~Hz}), 5.55(\mathrm{lH} \mathrm{dd} . J=9.1,.3.1 \mathrm{~Hz})$. 5.28 ($\mathrm{lH} . \mathrm{m}$). 2.39 ($3 \mathrm{H} . \mathrm{s}$). 1.53 ($3 \mathrm{H} . \mathrm{d} . ~ J=6.5 \mathrm{~Hz}$): lR (KBr) 2986. 1713, 1645, 1572. 1495, 1427. 1371. 1304, 1269. 1219. 1202. 1127. 1084. 1028. $92+899922 \mathrm{~cm}^{-1}: \mathrm{HRMS} \mathrm{m} / \mathrm{z}$ (M^{\prime}) calcd for $\mathrm{C}_{1 \cdot 1} \mathrm{H}_{12} \mathrm{O}_{3}: 228.0786$. Found: 228.0790 .

2,2-Dimethyl-2H-pyrano[3,2-c|chromen-5-one (19). Reaction of 4 -hydroxycoumarin (3) (162 mg .1 mmol) with 3-methyl-2-butenal (168 mg .2 mmol) afforded 19 (181 mg . 79%) as a liquid: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 7.78(1 \mathrm{H}, \mathrm{dd} . ~ J=$ $7.8 .1 .6 \mathrm{~Hz}) .7 .50(1 \mathrm{H}, \mathrm{m}) .7 .30-7.23(2 \mathrm{H}, \mathrm{m}) .6 .53(1 \mathrm{H}, \mathrm{d} . J$ $=9.9 \mathrm{~Hz}) .5 .52(1 \mathrm{H} . \mathrm{d} . J=9.9 \mathrm{~Hz}) .1 .47(6 \mathrm{H}, \mathrm{s}): 1 \mathrm{R}$ (neat) $3073,2978,2930.1715,1642,1566.1+93.1458,1+16.1362$. 1327. 1281, 1217. 1192. 1157. 1115. 1038. 992, $909 \mathrm{~cm}^{-1}$. HRMS $\mathrm{m} / \mathrm{Z}\left(\mathrm{M}^{\prime}\right)$ calcd for $\mathrm{C}_{1 \cdot 1} \mathrm{H}_{12} \mathrm{O}_{3}: 228.0786$. Found: 228.0790 .

2,2,9-Trimethyl- $2 H$-pyrano [3,2-c|chromen-5-one (20). Reaction of +-hydroxy-6-methyl-coumarin (4) (176 mg . I mmol) with 3-methyl-2-butenal (168 mg .2 mmol) afforded $20(170 \mathrm{mg} .70 \%)$ as a solid: mp $107-109^{\circ} \mathrm{C} \cdot{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}) \delta 7.55(1 \mathrm{H} . \mathrm{s}) .7 .30(1 \mathrm{H}, \mathrm{d}, J=8 .+\mathrm{Hz}) .7 .17(1 \mathrm{H}, \mathrm{d} . J$ $=8 .+\mathrm{Hz}) .6 .50(1 \mathrm{H} . \mathrm{d} . J=10.0 \mathrm{~Hz}) .5 .+9(1 \mathrm{H} . \mathrm{d} . J=10.0$ $\mathrm{Hz}) .2 .39(3 \mathrm{H} . \mathrm{s}), 1.53(6 \mathrm{H}, \mathrm{s}): \operatorname{IR}(\mathrm{KBr}) 2976.2922,1711$, 1651. 1576. 1462, 1+18. 1354. 1316. 1279. 1194. 1154. 1127. 1107. 1046. 1024. 941. $920 \mathrm{~cm}^{-1}$: HRMS m/z (M') calcd for $\mathrm{C}_{15}: \mathrm{H}_{14} \mathrm{O}_{3}: 242.0943$. Found: 242.0946

9-Chlono-2,2-dimethyl-2H-pyrano| 3,2 -c|chromen-5-one (21). Reaction of 6-chloro-4-hydroxy-coumarin (5) (197 mg. 1 mmol) with 3-methyl-2-butenal (168 mg .2 mmol) afforded 21 ($171 \mathrm{mg}, 65 \%$) as a solid: mp $122-124^{\circ} \mathrm{C}:{ }^{\prime} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 7.74(1 \mathrm{H}, \mathrm{s}) .7 .45(1 \mathrm{H}, \mathrm{d} . J=8.7 \mathrm{~Hz}) .7 .23$ ($1 \mathrm{H} . \mathrm{d} . J=8.7 \mathrm{~Hz}$). $6.50(1 \mathrm{H} . \mathrm{d} . J=10.2 \mathrm{~Hz}$). $5.55(1 \mathrm{H} . \mathrm{d} . J$ $=10.2 \mathrm{~Hz}): \mathrm{IR}(\mathrm{KBr}) 297+2933,1718,165 \mathrm{I} .1603,1562$. 1485. 1416. 1351. 1311. 1263. 11+4. 1119. $1005.911 \mathrm{~cm}^{-1}$:

Anal. Calcd for $\mathrm{C}_{1.4} \mathrm{H}_{11} \mathrm{ClO}_{3}$: C. 64.01: H. 4.22. Found: C, 64.51: H, 4.28.

2,3-Dimethyl-2H-pyrano[3,2-c]chromen-5-one (22). Reaction of 4 -hydroxycoumarin (3) (162 mg .1 mmol) with trans-2-methyl-2-butenal (168 mg .2 mmol) afforded 22 ($103 \mathrm{mg} .45 \%$) as a solid: mp $59-60^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 7.73$ ($\mathrm{lH} . \mathrm{dd} . ~ J=7.8 .1 .6 \mathrm{~Hz}$), 7.46 ($\mathrm{lH} . \mathrm{m}$), $7.29-7.21$ $(2 \mathrm{H} . \mathrm{m}) .6 .31(1 \mathrm{H}, \mathrm{s}) .5 .09(1 \mathrm{H}, \mathrm{q} . J=7.9 \mathrm{~Hz}) .1 .73(3 \mathrm{H} . \mathrm{s})$, $1.46(3 \mathrm{H}, \mathrm{d} . J=7.9 \mathrm{~Hz})$; IR (KBr) 3061. 2984. 2926. 2859. 1707. 1644. 1570. 1495. 1427. 1372. 1269. 1219. 1202, 1155. 1127, 1084, 1028. 924, 901 cm${ }^{-1}$: HRMS m/z (M) calcd for $\mathrm{C}_{1 \cdot 1} \mathrm{H}_{1}: \mathrm{O}_{3}: 228.0786$. Found: 228.0786.

2,3,9-Trimethyl-2H-pyrano[3,2-c]chromen-5-one (23). Reaction of + -hydroxy-6-methyl-coumarin (4) (176 mg .1 mmol) with trans-2-methyl-2-butenal (168 mg .2 mmol) afforded $23(97 \mathrm{mg} .40 \%)$ as a solid: $\mathrm{mp} 93-95^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 7.52(1 \mathrm{H} . \mathrm{s}) .7 .29(1 \mathrm{H} . \mathrm{d} . J=10.1 \mathrm{~Hz}) .7 .17$ $(1 \mathrm{H} . \mathrm{d}, J=10.1 \mathrm{~Hz}) .6 .30(1 \mathrm{H}, \mathrm{s}), 5.05(1 \mathrm{H} . \mathrm{q}, J=7.8 \mathrm{~Hz})$. $2.39(3 \mathrm{H}, \mathrm{s}), 1.8+(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{d} . J=7.8 \mathrm{~Hz})$: IR (KBr) 2983, 2926. 28611710, 1660, 1620, 1607. 1575. 1499, 1439. 1400, 1324, 1300, 1207. 1167, 1124. 1063. 991. 975, 926, $816 \mathrm{~cm}^{-1}$: HRMS m/ $/ \mathrm{z}(\mathrm{M})$ calcd for $\mathrm{C}_{15} \mathrm{H}_{1:} \mathrm{O}_{3}: 2+2.09+3$. Found: 242.0945 .

2-Methyl-9,10,11,11a-tetrahydıo-8H-chromeno $[4,3-b \mid$ chio-men-6-one (24). Reaction of 4 -hydrosy-6-methyl-coumarin (4) (176 mg .1 mmol) with 1 -cy lohexene-1-carboxaldehyde (220 mg .2 mmol) afforded 24 ($167 \mathrm{mg} .62 \%$) as a solid: mp $125-128^{\circ} \mathrm{C}$: ${ }^{\text {H }} \mathrm{H}$ NMR (300 MHz) $\delta 7.48$ (s. 1 H). 7.27 ($1 \mathrm{H} . \mathrm{d}$. $J=10.1 \mathrm{~Hz}) .7 .14(1 \mathrm{H}, \mathrm{d} . J=10.1 \mathrm{~Hz}) .6 .19(1 \mathrm{H} . \mathrm{s}) .5 .18$ ($\mathrm{IH} . \mathrm{dd} . J=13.5 \cdot 6.5 \mathrm{~Hz}$), $2.38(3 \mathrm{H} . \mathrm{s}) \cdot 2.38-1.27(8 \mathrm{H}, \mathrm{m})$; IR (KBr) 2922. 1709. 1493, 1426. 1329. 1204, 1115. 1053. 1015. 963. 936. $891 \mathrm{~cm}^{-1}$: HRMS m/z (M) calcd for $\mathrm{C}_{1}: \mathrm{H}_{16} \mathrm{O}_{3}: 268.1099$. Found: 268.1096.

10-Methyl-10 H -11-oxa-benzo[de]anthracen-7-one (25). Reaction of 3-hydoxy-1/H-phemalen-1-one (8) (196 mg . 1 mmol) with crotonaldahyde (140 mg .2 mmol) afforded 25 ($120 \mathrm{mg} .48 \%$) as a solid: $\mathrm{mp} 94-96^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 8.59(1 \mathrm{H}, \mathrm{dd} . J=7.3,1.2 \mathrm{~Hz}) .8 .19(1 \mathrm{H} . \mathrm{dd} . J=7.3 .1 .1$ $\mathrm{Hz}) .8 .10(1 \mathrm{H}, \mathrm{dd}, J=8.1 .1 .1 \mathrm{~Hz}) .8 .01(1 \mathrm{H} . \mathrm{dd} . J=8.2 .1 .1$ $\mathrm{Hz}) .7 .69(1 \mathrm{H}, \mathrm{dd}, J=8.1 .7 .3 \mathrm{~Hz}) .7 .59(1 \mathrm{H} . \mathrm{dd} . J=8.2 .7 .3$ $\mathrm{Hz}) .6 .88(\mathrm{lH} . \mathrm{d} . J=9.9 \mathrm{~Hz}) .5 .61(1 \mathrm{H} . \mathrm{dd} . J=9.9 .3 .3 \mathrm{~Hz})$. $5.25(\mathrm{IH.m}) .1 .54(3 \mathrm{H} . \mathrm{d} . J=6.6 \mathrm{~Hz})$: $\mathrm{IR}(\mathrm{KBr}) 3059.2976$. 2926. 1633. 1577. 1509. 1427, 13081. 1358. 1323. 1225. 1193. 1156. 1126. 1021. 913. 877. $8+6 \mathrm{~cm}^{-1}:$ HRMS m/z (M) calcd for $\mathrm{C}_{1}: \mathrm{H}_{12} \mathrm{O}_{2}: 2+8.0837$. Found: 248.0839 .

10,10-Dimethyl-10 H -11-oxa-benzo|de|anthracen-7-one (26). Reaction of 3-hydoxy-1 H-phenalen-1-one (8) (196 mg . 1 mmol) with 3-methyl-2-butenal (168 mg .2 mmol) afforded 26 ($237 \mathrm{mg} .90 \%$) as a solid: mp $85-88^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}) \delta 8.59(\mathrm{lH} . \mathrm{dd}, J=7.3 .1 .2 \mathrm{~Hz}) .8 .21(1 \mathrm{H}, \mathrm{dd}, J=7.3$. $1.1 \mathrm{~Hz}) .8 .10(1 \mathrm{H}, \mathrm{dd} . J=8.1 .1 .1 \mathrm{~Hz}) .8 .01(\mathrm{lH} . \mathrm{dd} . J=8.2$. $1.1 \mathrm{~Hz}) .7 .69(1 \mathrm{H}, \mathrm{dd} . J=8.1 .7 .3 \mathrm{~Hz}) .7 .60(1 \mathrm{H} . \mathrm{dd} . J=8.2$. $7.3 \mathrm{~Hz}) .6 .83(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}) .5 .56(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz})$. $1.5+(6 \mathrm{H} . \mathrm{s})$: $\mathrm{IR}(\mathrm{KBr}) 2975,2927.1632$. 1578. 1506. $1+58$. 1425. 1387. 1331. 1259. 1152, 1127. $898 \mathrm{~cm}^{-1}$: HRMS m/z (M) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}: 262.0993$. Found: 262.0994.

9,10-Dimethyl-10H-11-oxa-benzo|de|anthracen-7-one
(27). Reaction of 3-hydoxy-1 H -phenalen-1-one (8) (196 mg , 1 mmol) with 3 -methyl-2-butenal (168 mg .2 mmol) afforded 27 ($105 \mathrm{mg}, 40 \%$) as a solid: $\mathrm{mp} 136-139{ }^{\circ} \mathrm{C} \cdot{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 8.59(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}) .8 .17(\mathrm{lH}, \mathrm{d}, J=7.3$ $\mathrm{Hz}) .8 .10(1 \mathrm{H} . \mathrm{d} . J=7.8 \mathrm{~Hz}) .7 .99(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.69$ $(1 \mathrm{H} . \mathrm{dd} . J=7.8 .7 .3 \mathrm{~Hz}) .7 .57(1 \mathrm{H}, \mathrm{dd}, J=7.8,7.3 \mathrm{~Hz}), 6.61$ $(1 \mathrm{H} . \mathrm{s}) .5 .06(1 \mathrm{H} . \mathrm{q} . J=6.4 \mathrm{~Hz}) .1 .89(3 \mathrm{H}, \mathrm{s}) .1 .45(3 \mathrm{H}, \mathrm{d} . J$ $=6.4 \mathrm{~Hz}): \mathbb{R}(\mathrm{KBr}) 3075.2978 .2930,1713.16+4.1566$. 1493, 1456, 1414, 1362, 1327, 1281, 1248, 1217, 1157. 1115. 1038. 989. $909 \mathrm{~cm}^{-1}$: HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M})$ calcd for $\mathrm{C}_{18} \mathrm{H}_{1: 3} \mathrm{O}_{2}: 262.0994$. Found: 262.0993.

10,11,12,12a-Tetrahydro-9H-13-oxa-benzo|de]naph-thacen-7-one (28). Reaction of 3-hydoxy-1 $/$-phenalen-1one (8) (196 mg .1 mmol) with l-cylohexene-l-carboxaldehyde (220 mg .2 mmol) afforded 28 ($173 \mathrm{mg} .60 \%$) as a liquid: ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 8.55(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 8.13$ $(1 \mathrm{H} . \mathrm{d} . J=7.3 \mathrm{~Hz}) .8 .07(1 \mathrm{H} . \mathrm{d} . J=8.1 \mathrm{~Hz}) .7 .97(1 \mathrm{H} . \mathrm{d} . J=$ $8.1 \mathrm{~Hz}) .7 .67(1 \mathrm{H}, \mathrm{dd}, J=8.1,7.3 \mathrm{~Hz}) .7 .57(1 \mathrm{H}, \mathrm{dd}, J=8.1$. $7.3 \mathrm{~Hz}) .6 .51(1 \mathrm{H} . \mathrm{s}) .5 .17(1 \mathrm{H} . \mathrm{dd} . J=11.1,5.1 \mathrm{~Hz}) .2 .51-$ $1.34(8 \mathrm{H}, \mathrm{m})$; IR (neat) $3060.2933 .2857 .1632,1577.1+22$. 1383. 1296. 1198. 1026. $941,861 \mathrm{~cm}^{-1}$: HRMS m/z (M') calcd for $\mathrm{C}_{9}, \mathrm{H}_{16} \mathrm{O}_{2}: 288.1150$. Found: 288.1146.

Flindersine (29) ${ }^{2-2}$. Reaction of + -hydroxy-2(1H)-quinolone (6) (161 mg . 1 mmol) with 3-methyl-2-butenal (168 mg. 2 mmol) afforded $29(9+\mathrm{mg}, 41 \%)$ as a solid: mp 195 ${ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.5$ ($1 \mathrm{H}, \mathrm{s}$), 7.87 ($1 \mathrm{H}, \mathrm{d}$. $J=8.1 \mathrm{~Hz}) .7 .46(1 \mathrm{H} . \mathrm{dd}, J=8.2 .7 .4 \mathrm{~Hz}) .7 .31(1 \mathrm{H}, \mathrm{d} . J=$ $8.2 \mathrm{~Hz}) .7 .17(1 \mathrm{H} . \mathrm{dd} . J=8.1 .7 .+\mathrm{Hz}) .6 .75(1 \mathrm{H} . \mathrm{d} . J=9.9 \mathrm{~Hz})$, $5.54(\mathrm{lH} . \mathrm{d} . J=9.9 \mathrm{~Hz}) .1 .53(6 \mathrm{H} . \mathrm{s})$: $\mathrm{R}(\mathrm{KBr}) 3152.2975$. 1651. 1630. 1599. 1499. 1433. 1411. 1361. 1278. 1132. $872 \mathrm{~cm}^{-1}$.
N-Methylflindersine (30) ${ }^{23}$. Reaction of 4-hydroxy-1-methyl-2($1 H$)-quinolone (7) ($175 \mathrm{mg}, 1 \mathrm{mmol}$) with 3-meth-yl-2-butenal (168 mg .2 mmol) afforded $30(97 \mathrm{mg}, ~+0 \%)$ as a solid: $\mathrm{mp} 80^{\circ} \mathrm{C}:{ }^{\circ} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{IH}$. $\mathrm{d} . J=8.0 \mathrm{~Hz}) .7 .51(1 \mathrm{H} . \mathrm{dd} . J=8.3 .7 .3 \mathrm{~Hz}) .7 .28(1 \mathrm{H} . \mathrm{d} . J=$ $8.3 \mathrm{~Hz}) .7 .19(1 \mathrm{H} . \mathrm{dd} . J=8.0 .7 .3 \mathrm{~Hz}) .6 .73(1 \mathrm{H} . \mathrm{d} . J=10.0$ $\mathrm{Hz}) .5 .51(1 \mathrm{H}, \mathrm{d} . J=10.0 \mathrm{~Hz}) .3 .67(3 \mathrm{H}, \mathrm{s}) .1 .49(6 \mathrm{H}, \mathrm{s})$: IR $(\mathrm{KBr}) 2976.1645,1505,1+64.1+18,1360.1325 .1211$, 1154, 1123, 1092, 10+4, 1005. 987, 895 cm^{-1}.

Conclusion

The indium(III) chloride-catalyed reactions of 1.3 -dicarbonyl compounds with $\alpha . \beta$-unsaturated aldelydes are carried out in refluxing acctonitrile to yield the $2 / /$-pyrans. These methods have been applied to the synthesis of biologically interesting pyranocounarins and pyranophenalcnones. and naturally occurring pyranoquinolinone alkaloids such as findersine (29) and A -methylflindersine (30) in moderate yiclds.

Acknowledgment. This work was supporied by Research Grant of Advanced Rescarch Center at Yeungnam University (105096).

References and Notes

1. (a) McKee. T.: Fuller. R. W.: Covington. C. D.: Cardellina II. J.
H.: Gulahowshi. R. I.: Krepps. B. L.: MeMahon. J. B.: Bovd. M. R. J. Aat. Prokl. 1996. 59. 754. (b) McKee. T. C.: Covington. C. D.: Fuller. R. W.: Bohewh. H. R.: Young. S.: Cardellina. J. H.. II: Kadushin, M. R.: Doel Socjarto. D.: Stevens. P. F.: Crage. G. M.: Bord. M. R. J. Fat. Frod. 1998, 61, 1252. (c) Girundon. M. F. In The Alkatoids: Ouinoline Ahatoids Related to Anhronilic icid. Academic Press: London. 1988: vol 32. p 341. (d) Ulubelen. A: Mericli. A. H.: Mericli. F.: Kaya. iu, Ihotochemishy 1994. 35 1600. (e) Wu. S-I.: Chen. I.-S. I'rptochnmistry 1993. 3f. 1659 . (1) Campbell, W. F.: Davidowitr. B.: Jackson. G. F. Phytochemistry 1990, 29, 1303. (g) Khalid, S. A.: Waterman. P. G. Phetochemisty 1981, 20. 2761. (h) Itifnary. M. S.: Vaquette, J.: Sévenet. T: P'ousset. J.-L.: Cavé. A. I'tutochemistry 1977. 16. 1035. (i) Stermitz. F. R.: Sharifi. I. A. Ihotochemistry 1977. 16. 2003.
2. (a) Abd. E.: Hisham. A. Pharmazie 1997. 52. 28. (b) Chen. 1.-S.: Wu. S.-J.: Tsai. I. J.: Wu. T.-S.: Pczzuto. J. M.: In, M. C.: Chai, II.: Sult. N.: Teng. C.-M. J. Aof. Prod 1994. 57. 1206. (c) Magiatis. P.: Melliou. F..: Skaltsounis. A.-I..: Mitakit. S.: I Éonce. S.: Renard. P.: Pierre. A.: Alassi. G. J. Vat. Iroed. 1998. 61.982.
3. (a) Marvell. E. N.: Gossink. T. J. Org, Chem. 1972. 37. 3036. (b) Salieddine. A.: Royer. J.: Dreux. J. Bull. Soc. Chim. Fr: 1972. 1646. (c) Rover. J.: Dreux, J. Bull. Soc. (Whim. Fr. 1972. 707. (d) Roedig. A.: Neukam, T. (Hem. Ber: 1974, 107. 3463. (c) Roedig. A.: Neukam, T. Liehigs .Ifm. (hem. 1975. 240. (f) de Greot. A.: Jansen. B. J. M. Fetrahedron Lett. 1975. 3407.
4. Babu. G.. Perumal. P. I. Aldrichimica Acta 2000. $33(1) .16$.
5. (a) Kobayashi. S. Swheth 1994. 689. (b) Francesco. F.: Pizzo. F:: Vaccaro, I..J. Org. Chen. 2001, 66. 3554 (c) I.oh. T.-P.: Wei, I..I.. Tetrahedron Lett. 1998, 39. 323.
6. (a) Mukaiyama. T.: Ohno. T.: Ilan, I. S.: Kobayashi, S. Chem. Leff. 1991.949. (b) Loh. T.--P.: Pei. J.: Cao. G.--Q. Chem. Commm. 1996. 1819. (c) Kobayashi. S.: Busujima. T:: Nagayama. S. Tetrohedron Letl. 1998. 39. 1579.
7. I.oh. T.-P.: I.iung. S. B. K. W.: Tat. K.-I... Wei. I..-I.. Fetrahedrom 2000. 56.3227
8. (a) J.oh. T.-P.: Pei, J. J.in. M. Chem. Comman 1996, 2.315. (b) Babu. G.: Perumal. P. T. Fetrohedow Leff 1997. 38. 5025. (c) Babu. G.: Perumal. P. I. Tetrohedron Letl. 1998. 39. 3225. (d) Bubu. G.:. Perumal. P. I. Tetrohedrom Letr. 1999. 55. 4793.
9. Sengupta. S.: Mondal, S. Tetrahedmon Lett. 2000. H1. $62+5$.
10. (a) Mukaivama. T: Ohno. T.: Nishimura. T.: Suda, S:: Kobayashi, S. (hem. Iett. 1991, 1059. (b) Mivai. T.: Onishi. Y.: Baba. A. Tetrahe dron Letl. 1998. 39.6291.
11. Li. X. R.: Loh. T.-P' Tetrahedron: Aspmmetry 1996. 7. 1535.
12. Ranu. B. C.: Hajra. A.: Jana. U. J. Org. Chem. 2000. 65.6270.
13. Cravotto. G.: Nano. G. M.: Tagliapictra. S. Symhesis 2001. 49
14. (a) Mulholland. D.: Iourine, S: Taylor. D. A. H.: Dean. F. M. Pyochenisiry 1998. 47. 1641. (b) Bohlmann, F.: 7dero. C. Pytochemistry 1977. 16. 1261. (c) Bither. M.: Jakupovic. J.: Bohlmann. F.: Grenz. M.: Silva. M. Phochemisty 1988. 27. 3845. (d) Bittner. M.: Jakupovic. J.: Bohlmann. F.: Silva. M. /hwfochemishy 1988, 27. 3263. (c) Wolfrum, C.: Bohlmann. F. Liehigs than Chem 1989. 295.
15. Ahmad. S. I Nat Prod 1984, +7. 391
16. Mitaku. S.: Skaltsounis. A.-L.: Tillequin. F.: Koch. M.: Pusset. J.: Chauviere. G. J. Haff Prod. 1985. +8. 772.
17. Ulubelen. A. Phyochemisty 1984. 23. 2123.
18. Bowen, I. I.: J.ewis, J. R. Itovcha 1978. f/, 184.
19. Tantivatana, P.: Ruangrungsi. N.: Vaisiromoj. V.: I ankin. D. C.: Bhacea, N. S.: Bortis. R. P.: Cordell, G. A.: Johmsom, I.. F. J. Org. Chem. 1983. 48. 268.
20. Munoz. M. A.: Torres. R.: Cassels. B. K. J. Aaf. Prod. 1982. 4j. 367.
21. (a) Chou, F. Y: F Instetmamm, K.: Kubo, I.: Nakanishi. K:: Taniguchi. M. Ieterocycles 1977, 7. 969. (b) Hostettmann. K.: Pettei. M. I.: Kubo. I.: Nakamishi, K. Helv Chim. tcta 1977, 60, 670.
22. (a) Funayama. S.: Murata. K.: Nozoe. S. Phptochemistry 1994. 36. 525 . (b) Hulfman. J. W.: Hsu. T. M. Tetrahedron Lett. 1972, 141.
