DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclobutanecarboxylates in Acetonitrile


Abstract

Kinetic studies of the reaction of Z-aryl cyclobutanecarboxylates with X-pyridines in acetonitrile at $55.0^{\circ}C$ have been carried out. The reaction proceeds by a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterion ic tetrahedral intermediate, T $\pm$ . These mechanistic conclusions are drawn based on (i) the large magnitude of ${\rho}X$ and $\rhoZ$, (ⅱ) the positive sign of ${\rho}XZ$ and the larger magnitude of $\rhoXZ$ than normal SN2 processes, (ⅲ) a small positive enthalpy of activation, ${\Delta}H{\neq}$, and a large negative, ${\Delta}S{\neq}$, and lastly (iv) adherence to the reactivity-selectivity principle (RSP) in all cases.

Keywords

References

  1. Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96,7018. https://doi.org/10.1021/ja00829a034
  2. Koh, H. J.; Lee, H. C.; Lee, H. W.; Lee, I. Bull. Korean Chem.Soc. 1995, 16, 839.
  3. Castro, E. A.; Valdivia, J. L. J. Org. Chem.1986, 51, 1668. https://doi.org/10.1021/jo00360a007
  4. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970. https://doi.org/10.1021/ja00463a033
  5. Bond, P. M.; Moodie, R. B. J. Chem. Soc., Perkin Trans. 21976, 679.
  6. Castro, E. A.; Gil, F. J. Am. Chem. Soc. 1977, 99,7611. https://doi.org/10.1021/ja00465a032
  7. Castro, E. A.; Freudenberg, M. J. Org. Chem. 1980, 45,906. https://doi.org/10.1021/jo01293a027
  8. Castro, E. A.; Ibanez, F.; Lagos, S.; Schick, M. ; Santos, J.G. J. Org. Chem. 1992, 57, 2691. https://doi.org/10.1021/jo00035a028
  9. Koh, H. J.; Shin, C. H.; Lee, H. W.; Lee, I. J. Chem. Soc., PerkinTrans. 2 1998, 1329.
  10. Lee, H. W.; Yun, Y. S.; Lee, B. S.; Koh, H. J.; Lee, I. J. Chem.Soc., Perkin Trans. 2 2000, 2032.
  11. Page, M.; Williams, A. Organic and Bio-organic Mechanisms,Longman: Harlow, 1997, ch. 2.
  12. Gresser, M. J.; Jencks, W. P. J.Am. Chem. Soc. 1997, 99, 6963. https://doi.org/10.1021/ja00463a032
  13. Palling, D. J.; Jencks, W. P. J.Am. Chem. Soc. 1984, 106, 4869. https://doi.org/10.1021/ja00329a040
  14. Castro, E. A.; Ureta, C. J.Org. Chem. 1990, 55, 1676. https://doi.org/10.1021/jo00292a051
  15. Lee, I.; Lee, D.; Kim, C. K. J. Phys. Chem. A 1997, 101, 879. https://doi.org/10.1021/jp961145o
  16. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999, 64, 4783. https://doi.org/10.1021/jo990115p
  17. Castro, E. A.; Ureta, C. J. Chem. Soc. Perkin Trans. 2 1991,63.
  18. Koh, H. J.; Kim, S. I.; Lee, B. C.; Lee, I. J. Chem. Soc., PerkinTrans. 2 1996, 353.
  19. Kim, T. H.; Huh, C.; Lee, B. S.; Lee, I. J.Chem. Soc., Perkin Trans. 2 1995, 2257.
  20. Koh, H. J.; Lee, J. W.;Lee, H. W.; Lee, I. Can. J. Chem. 1998, 76, 710. https://doi.org/10.1139/cjc-76-6-710
  21. Koh, H. J.;Han, K. L.; Lee, J. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  22. Koh, H. J.; Lee, J. W.; Lee, H. W.; Lee, I. New J. Chem. 1997, 21,447.
  23. Koh, H. J.; Kim, O. S.; Lee, J. W.; Lee, I. J. Phys. Org.Chem. 1997, 10, 725. https://doi.org/10.1002/(SICI)1099-1395(199710)10:10<725::AID-POC943>3.0.CO;2-X
  24. Koh, H. J.; Kim, T. H.; Lee, B. S.; Lee, I.J. Chem. Res. 1996, (S) 482, (M) 2741.
  25. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  26. Lee, I. Chem.Soc. Rev. 1995, 24, 223. https://doi.org/10.1039/cs9952400223
  27. Isaacs, N. S. Physical Organic Chemistry, 2nd Ed.; Longman: Harlow, 1995; ch. 4.
  28. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B.J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  29. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J.Chem. Soc., Perkin Trans. 2 1996, 2099.
  30. Reichardt, C. Solvent and Solvent Effects in Organic Chemistry;2nd ed; VCH: Weinheim, 1988; Table A-1, p 408.
  31. Lee, I.; Choi, Y. H.; Lee, H. W.; Lee, B. S. J. Chem. Soc.Perkin Trans. 2 1988, 1537.
  32. Gilliom, R. D. Introduction toPhysical Organic Chemistry; Addison-Wesley; Reading, MA,1970; p 148.
  33. Jacobson, B. M.; Lewis, E. S. J. Org. Chem.1988, 53, 446. https://doi.org/10.1021/jo00237a047
  34. Siggel, M. R. F.; Streitwieser, A., Jr.; Thomas,T. D. J. Am. Chem. Soc. 1988, 110, 8022. https://doi.org/10.1021/ja00232a011
  35. Lee, I.; Lee, B. S.;Koh, H. J.; Chang, B. D. Bull. Korean Chem. Soc. 1995, 16, 277.
  36. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824. https://doi.org/10.1021/ja00766a027
  37. Buncel, E.; Um, I. H. J. Chem. Soc., Chem. Commun. 1986,595.
  38. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989,111, 791.
  39. Kown, D. S.; Nahm, J. H.; Um, I. H. Bull. KoreanChem. Soc. 1994, 15, 654.
  40. Um, I. H.; Yoon, H. W.; Lee, J. S.;Moon, H. J.; Kown, D. S. J. Org. Chem. 1997, 62, 5939. https://doi.org/10.1021/jo970665s
  41. Um, I.H.; Hong, Y. J.; Lee, Y. J. Bull. Korean Chem. Soc. 1998, 19, 147.
  42. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem.2000, 65, 5659. https://doi.org/10.1021/jo000482x
  43. Um, I. H.; Kim, M. J.; Lee, H. W. Chem.Commun. 2000, 2165.
  44. Oh, H. K.; Jeong, J. Bull. Korean Chem.Soc. 2001, 22, 1123.
  45. Oh, H. K.; Woo, S. Y.; Oh, C. H.; Park, Y.S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  46. Oh, H. K.; Kim, S.K.; Cho, I. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306.
  47. Lee, I. Bull. Korean Chem. Soc. 1994, 15, 985.
  48. Lee, D.;Kim, C. K.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 1203.
  49. Lee, I.; Lee, D.; Kim, C. K. J. Phys. Chem. A 1997, 101, 879. https://doi.org/10.1021/jp961145o
  50. Pross, A. Adv. Phys. Org. Chem. 1977, 14, 69. https://doi.org/10.1016/S0065-3160(08)60108-2
  51. Exner, D. J.Chem. Soc., Perkin Trans. 2 1993, 973.
  52. Buncel, E.; Wilson, H.J. Chem. Educ. 1987, 64, 475. https://doi.org/10.1021/ed064p475
  53. Neuvonen, H. J. Chem. Soc., Perkin Trans. 2 1995, 951.
  54. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G. J. Org. Chem.1991, 56, 4819 https://doi.org/10.1021/jo00016a002
  55. Song, B. D.; Jencks, W. P. J. Am. Chem. Soc.1989, 111, 8479. https://doi.org/10.1021/ja00204a022
  56. Castro, E. A.; Salas, M. J.; Santos, J. G. J. Org. Chem. 1994,59, 30. https://doi.org/10.1021/jo00080a008
  57. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem.1996, 61, 3501. https://doi.org/10.1021/jo951726u
  58. Exner, O. In Correlation Analysis in Chemistry, Recent Advances;Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978;ch. 10.

Cited by

  1. Kinetics and mechanism of the pyridinolysis of diaryl carbonates vol.21, pp.9, 2008, https://doi.org/10.1002/poc.1399
  2. -arylthiocarbamates in acetonitrile vol.21, pp.11, 2008, https://doi.org/10.1002/poc.1418
  3. Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclopropanecarboxylates in Acetonitrile vol.24, pp.7, 2002, https://doi.org/10.5012/bkcs.2003.24.7.925
  4. Effect of Amine Nature on Rates and Mechanism: Pyridinolyses of 4-Nitrophenyl Benzoate vol.24, pp.9, 2002, https://doi.org/10.5012/bkcs.2003.24.9.1245
  5. Effect of Nonleaving Group on the Reaction Rate and Mechanism: Aminolyses of 4-Nitrophenyl Acetate, Benzoate and Phenyl Carbonate vol.24, pp.9, 2002, https://doi.org/10.5012/bkcs.2003.24.9.1251
  6. Applications of Third Order Models in Solvolytic Reaction of Aliphatic Substituted Acyl Derivatives in 2,2,2-Trifluoroethanol-Ethanol Systems vol.24, pp.9, 2003, https://doi.org/10.5012/bkcs.2003.24.9.1293
  7. Kinetics and Mechanism of the Aminolysis of 4-Methylphenyl and 4-Chlorophenyl 4-Nitrophenyl Carbonates in Aqueous Ethanol vol.68, pp.9, 2002, https://doi.org/10.1021/jo034008d
  8. Nucleophilic Substitution Reactions of Aryl Thiophene-2-carbodithioates with Pyridines in Acetonitrile vol.25, pp.2, 2002, https://doi.org/10.5012/bkcs.2004.25.2.203
  9. Kinetics and Mechanism of the Aminolysis of Anilino Thioethers with Benzylamines in Acetonitrile vol.25, pp.4, 2004, https://doi.org/10.5012/bkcs.2004.25.4.557