DOI QR코드

DOI QR Code

Highly Selective Triiodide Polymeric Membrane Electrode Based on Tetra(p-chlorophenyl)porphyrinato Manganese (Ⅲ) Acetate


Abstract

A new solvent polymeric membrane sensor based on tetra(p-chlorophenyl)porphyrinato manganese (III) acetate is described which demonstrates excellent selectivity toward the triiodide ion. The electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-2}$ M and 7.0 ${\times}$$10^{-6}$M with a Nernstian slope of $-59.6{\pm}1$ mV per decade and a detection limit of 5.0 ${\times}$$10^{-6}$M. The proposed sensor revealed good selectivities for triiodide over a wide variety of other anions and could be used in a pH range 2-9. The electrode can be used for at least two months without any considerable divergence in potential. It was applied as indicator electrode in potentiometric titration of the triiodide and As(III) ions.

Keywords

References

  1. Nomura, S. Analyst 1995, 120, 503. https://doi.org/10.1039/an9952000503
  2. Wotring, V. J.; Johonson, D. M.; Bachas, L. G. Anal. Chem. 1990, 62, 1506. https://doi.org/10.1021/ac00213a030
  3. Ozawa, S.; Miyagi, H.; Shibata, Y.; Oki, N.; Kunita, N. T.; Keller, W. E. Anal. Chem. 1995, 68, 4149. https://doi.org/10.1021/ac960526v
  4. Daunert, S.; Bachas, L. G. Anal. Chem. 1989, 61, 499. https://doi.org/10.1021/ac00180a025
  5. Schulthess, P.; Ammann, D.; Kraulter, B.; Caderas, C.; Stepane, K. R.; Simon, W. Anal. Chem. 1985, 57, 1397. https://doi.org/10.1021/ac00284a048
  6. Stepinek, R.; Krautler, B.; Schulthess, P.; Lindemann, B.; Ammonn, D.; Simon, W. Anal. Chim. Acta 1986, 182, 83. https://doi.org/10.1016/S0003-2670(00)82439-3
  7. Gao, D.; Li, J. Z.; Yu, R. Q. Anal. Chem. 1994, 66, 2245. https://doi.org/10.1021/ac00086a008
  8. Li, Z. Q.; Yuan, R.; Ying, M.; Song, Y. Q.; Shen, G. L.; Yu, R. Q. Anal. Lett. 1997, 30, 1455. https://doi.org/10.1080/00032719708001667
  9. Hisamoto, H.; Siswanta, D.; Nishihara, H.; Suzuki, K. Anal. Chim. Acta 1995, 304, 171. https://doi.org/10.1016/0003-2670(94)00614-R
  10. Rothmaier, M.; Schaller, U.; Morf, W. E.; Pretsch, E. Anal. Chim. Acta 1996, 327, 17. https://doi.org/10.1016/0003-2670(96)00055-4
  11. Caniotakis, N. A.; Chasser, A. M.; Meyerhoff, M. E. Anal. Chem. 1988, 60, 185. https://doi.org/10.1021/ac00153a020
  12. Caniotakis, N. A.; Park, S. B.; Meyerhoff, M. E. Anal. Chem. 1989, 61, 566. https://doi.org/10.1021/ac00181a013
  13. Abe, H.; Kokufuta, E. Bull. Chem. Soc. Jpn. 1990, 63, 1360. https://doi.org/10.1246/bcsj.63.1360
  14. Daunert, S.; Wallace, S.; Florido, A.; Bachas, L. G. Anal. Chem. 1991, 63, 1676. https://doi.org/10.1021/ac00017a005
  15. Blair, T. L.; Allen, J. R.; Daunert, S.; Bachas, L. G. Anal. Chem. 1993, 65, 2155. https://doi.org/10.1021/ac00063a039
  16. Shamsipur, M.; Khayatian, G.; Tangestaninejad, S. Electroanalysis 1999, 18, 1340.
  17. Amini, M. K.; Shahrokhian, S.; Tangestaninejad, S. Anal. Chim. Acta 1999, 402, 137. https://doi.org/10.1016/S0003-2670(99)00549-8
  18. Tse, Y. H.; Janda, P.; Lam, H.; Lever, A. B. P. Anal. Chim. 1995, 67, 981. https://doi.org/10.1021/ac00101a028
  19. Chang, Q.; Meyerhoff, M. E. Anal. Chim. Acta 1986, 186, 81. https://doi.org/10.1016/S0003-2670(00)81776-6
  20. Suzuki, H.; Nakagawa, H.; Mifune, M.; Saito, Y. Anal. Sci. 1993, 9, 351. https://doi.org/10.2116/analsci.9.351
  21. Rouhollahi, A.; Shamsipur, M. Anal. Chem. 1999, 71, 1350. https://doi.org/10.1021/ac981077x
  22. Farhadi, K. H.; Maleki, R.; Shamsipur, M. Electroanalysis 2002, 14, 760. https://doi.org/10.1002/1521-4109(200206)14:11<760::AID-ELAN760>3.0.CO;2-Q
  23. ta, S.; Bhale, A.; Fukunaga, Y.; Murata, H. Anal. Chem. 1988, 60, 2465.
  24. Malinowska, E.; Meyerhoff, M. E. Anal. Chim. Acta 1995, 300, 33. https://doi.org/10.1016/0003-2670(94)00407-D
  25. Brown, D. V.; Chaniotakis, N. A.; Lee, H. I.; Ma, S. C.; Park, S. B.; Meyerhoff, M. E.; Nick, I. J.; Groves, J. T. Electroanalysis 1989, 1, 477. https://doi.org/10.1002/elan.1140010602
  26. Buhlmann, P.; Pretsch, E.; Bakker, E. Chem. Rev. 1998, 98, 1593. https://doi.org/10.1021/cr970113+
  27. Bakker, E.; Buhlmann, P.; Prestch, E. Chem. Rev. 1997, 97, 3033.
  28. Shamsipur, M.; Kazemi, S. Y.; Niknam, K.; Sharghi, H. Bull. Korean Chem. Soc. 2002, 23, 53. https://doi.org/10.5012/bkcs.2002.23.1.053
  29. Kirn, W.; Sung, D. D.; Clia, G. S.; Park, S. B. Analyst 1998, 123, 379. https://doi.org/10.1039/a705788a
  30. Christian, G. D. In Analytical Chemistry; Willey & Sons: New York, 1986.
  31. Gadzepko, V. P.; Christian, G. D. Anal. Chim. Acta 1984, 164, 279. https://doi.org/10.1016/S0003-2670(00)85640-8
  32. Umezawa, Y.; Umezawa, K.; Sato, H. Pure Appl. Chem. 1995, 67, 507. https://doi.org/10.1351/pac199567030507
  33. Bakker, E. Electroanalysis 1997, 9, 7. https://doi.org/10.1002/elan.1140090103
  34. Baily, P. L. In Analysis with Ion-Selective Electrodes; Heyden, London, 1996.
  35. Hofmeister, P. Arch. Exp. Pathol. Pharmacol. 1888, 24, 247. https://doi.org/10.1007/BF01918191

Cited by

  1. Construction of Triiodide Ion Selective Electrodes Based on Phenothiazine Derivatives vol.37, pp.6, 2004, https://doi.org/10.1081/AL-120034053
  2. Highly Selective and Sensitive Triiodide PVC‐Based Membrane Electrode Based on a New Charge Transfer Complex of 2‐(((2‐(((E)‐1‐(2‐Hydroxyphenyl) Methylidine) Amino) Phenyl) Imino) Methyl) Phenol for Nano‐Level Monitoring of Triiodide vol.39, pp.4, 2006, https://doi.org/10.1080/00032710600610816
  3. Supramolecular Based Membrane Sensors vol.6, pp.8, 2006, https://doi.org/10.3390/s6081018
  4. Central Composite Design Applied to the Optimization of a Triiodide Polymeric Membrane Electrode based on Triiodide-Piroxicam Ion Pair vol.41, pp.11, 2008, https://doi.org/10.1080/00032710802209318
  5. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade vol.8, pp.4, 2008, https://doi.org/10.3390/s8042331
  6. PVC-based Cu (II)-Schiff base complex membrane coated graphite electrode for the determination of the triiodide ion vol.61, pp.7, 2006, https://doi.org/10.1134/S1061934806070136
  7. Synthesis of a charge-transfer complex of (1,3-diphenyldihydro-1H-imidazole)-4,5-dione dioxide with iodide and its application to the development of a highly selective and sensitive triiodide PVC-membrane electrode vol.62, pp.3, 2007, https://doi.org/10.1134/S106193480703015X
  8. Reusable Porphyrinatoiron(III) Complex Supported on Activated Silica as an Efficient Heterogeneous Catalyst for a Facile, One-Pot, Selective Synthesis of 2-Arylbenzimidazole Derivatives in the Presence of Atmospheric Air as a “Green” Oxidant at Ambient Temperature vol.2008, pp.24, 2008, https://doi.org/10.1002/ejoc.200800351
  9. Immobilization of Porphyrinatocopper Nanoparticles onto Activated Multi-Walled Carbon Nanotubes and a Study of its Catalytic Activity as an Efficient Heterogeneous Catalyst for a Click Approach to the Three-Component Synthesis of 1,2,3-Triazoles in Water vol.351, pp.14-15, 2009, https://doi.org/10.1002/adsc.200900353
  10. [Tetrakis(4-N,N-dimethylaminobenzene)porphyrinato]manganese(III) Acetate as a Novel Carrier for a Selective Iodide PVC Membrane Electrode vol.20, pp.5, 2002, https://doi.org/10.2116/analsci.20.805
  11. Novel triiodide ion-selective polymeric membrane sensor based on mercury-salen vol.105, pp.2, 2002, https://doi.org/10.1016/s0925-4005(03)00625-7
  12. Highly Selective and Sensitive Triiodide PVC-Membrane Electrode Based on a New Charge-Transfer Complex of Bis(2,4-Dimethoxybenzaldehyde)butane-2,3-Dihydrazone with Iodine vol.53, pp.2, 2002, https://doi.org/10.1002/jccs.200600033
  13. Triiodide Ion-Selective Electrode Based on Charge-Transfer Complex of 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo-[8.8.8]hexacosane vol.53, pp.5, 2002, https://doi.org/10.1002/jccs.200600150
  14. Sequential Flow Injection Determination of Chlorine Species Using a Triiodide-selective Electrode Detector vol.22, pp.1, 2002, https://doi.org/10.2116/analsci.22.45
  15. Flow injection determination of peroxide value in edible oils using triiodide detector vol.565, pp.2, 2002, https://doi.org/10.1016/j.aca.2006.02.039
  16. Ketoconazol-Triiodide Ion Pair Complex as a Suitable Carrier in an Iodide Selective Membrane Electrode vol.54, pp.3, 2007, https://doi.org/10.1002/jccs.200700100
  17. Oxalate membrane-selective electrode based on surfactant-modified zeolite vol.56, pp.22, 2002, https://doi.org/10.1016/j.electacta.2011.02.069