DOI QR코드

DOI QR Code

Relationships between the Raman Excitation Photon Energies and Its Wavenumbers in Doped trans-Polyacetylene


Abstract

The resonance Raman spectra of trans-polyacetylene films doped heavily with electron donor (Na) and acceptor (HClO4) have been measured with excitation wavelengths between 488- and 1320-nm, and the relationships between the Raman excitation photon energies (2.54-0.94 eV) and its wavenumbers were discussed. We found the linear dependence of the Raman shifts with the exchanges of excitation photon energies. In particular, the Raman wavenumbers in the C=C stretching $(V_1$ band) showed a dramatic decrease with the increase in Raman excitation photon energies. In the case of acceptor doping, its change is larger than that of donor doping. The observed wavenumber (1255-1267 $cm^{-1}$) of the $V_2$ band (CC stretch) of Na-doped form is lower than that of the corresponding band (1290-1292 $cm^{-1}$) of its pristine trans-polyacetylene, whereas the contrary is the case for the HClO4 doped form (1295-1300 $cm^{-1}$). The origin of doping-induced Raman bands is discussed in terms of negative and positive polarons.

Keywords

References

  1. Heeger, A. J.; Kivelson, S.; Schrieffer, J. R.; Su, W. P. Rev. Mod. Phys. 1988, 60, 781. https://doi.org/10.1103/RevModPhys.60.781
  2. Moses, D.; Denenstein, A.; Chen, J.; Heeger, A. J.; McAndrew, P.; Woerner, T.; MacDiarmid, A. G.; Park, Y. W. Phys. Rev. B 1982, 25, 7652. https://doi.org/10.1103/PhysRevB.25.7652
  3. Chung, T.-C.; Moraes, F.; Flood, J. D.; Heeger, A. J. Phys. Rev. B 1984, 29, 2341. https://doi.org/10.1103/PhysRevB.29.2341
  4. Su, W. P.; Schrieffer, J. R.; Heeger, A. J. Phys. Rev. Lett. 1979, 42, 1698 https://doi.org/10.1103/PhysRevLett.42.1698
  5. Su, W. P.; Schrieffer, J. R.; Heeger, A. J. Phys. Rev. B 1980, 22, 2099. https://doi.org/10.1103/PhysRevB.22.2099
  6. Furukawa, Y.; Harada, I.; Tasumi, M.; Shirakawa, H.; Ikeda, S. Chem. Lett. 1981, 1486.
  7. Furukawa, Y.; Uchida, Y.; Spangler, C. W.; Tasumi, M. Mol. Cryst. Liq. Cryst. 1994, 256, 721. https://doi.org/10.1080/10587259408039315
  8. Kim, J. Y.; Ando, S.; Sakamoto, A.; Furukawa, Y.; Tasumi, M. Synth. Met. 1997, 89, 149. https://doi.org/10.1016/S0379-6779(98)80116-1
  9. Harada, I.; Furukawa, Y. In Vibrationl Spectra and Structure; Durig, J. R., Ed.; Elsevier: Amsterdam, 1991; Vol. 19, p 369.
  10. Gussoni, M.; Castiglioni, C.; Zerbi, G. In Spectroscopy of Advanced Materials; Clark, R. J. H., Hester, R. E., Eds.; Wiley: Chichester, 1991; p 251.
  11. Faulques, E.; Lefrant, S.; Rachdi, F.; Benier, P. Synth. Met. 1984, 9, 53. https://doi.org/10.1016/0379-6779(84)90041-9
  12. Eckhardt, H.; Shacklette, L. W.; Szobata, J. S.; Baughman, R. H. Mol. Cryst. Liq. Cryst. 1985, 117, 401. https://doi.org/10.1080/00268948508074658
  13. Tanaka, J.; Saito, Y.; Shimizu, M.; Tanaka, C.; Tanaka, M. Bull. Chem. Soc. Jpn. 1987, 60, 1595. https://doi.org/10.1246/bcsj.60.1595
  14. Kuzmany, H. Makromol. Chem., Makromol. Symp. 1990, 37, 81.
  15. Ito, T.; Shirakawa, H.; Ikeda, S. J. Polym. Sci.: Polym. Chem. Ed. 1974, 12, 11. https://doi.org/10.1002/pol.1974.170120102
  16. Furukawa, Y.; Ohta, H.; Sakamoto, A.; Tasumi, M. Spectrochem. Acta 1991, 47A, 1367.
  17. Takeuchi, H.; Arakawa, T.; Furukawa, Y.; Harada, I.; Shirakawa, H. J. Mol. Struct. 1987, 158, 179. https://doi.org/10.1016/0022-2860(87)80015-7
  18. Kim, J. Y.; Furukawa, Y.; Tasumi, M. Chem. Phys. Lett. 1997, 276, 418. https://doi.org/10.1016/S0009-2614(97)00825-7
  19. Lefrant, S.; Mulazzi, E.; Mathis, C. Phys. Rev. B 1994, 49, 13400. https://doi.org/10.1103/PhysRevB.49.13400
  20. Harada, I.; Furukawa, Y.; Tasumi, M.; Shirakawa, H. J. Chem. Phys. 1980, 73, 4746. https://doi.org/10.1063/1.440007
  21. Furukawa, Y.; Imai, Y.; Ohta, H.; Tasumi, M. Synth. Met. 1991, 41, 91. https://doi.org/10.1016/0379-6779(91)91007-W
  22. Kamisuki, T.; Hirose, C. J. Phys. Chem. 1991, 95, 5003. https://doi.org/10.1021/j100166a020
  23. Kivelson, S.; Heeger, A. J. Phys. Rev. Lett. 1985, 55, 308. https://doi.org/10.1103/PhysRevLett.55.308

Cited by

  1. Characterization of Nano-crystalline Diamond Films Grown Under Continuous DC Bias During Plasma Enhanced Chemical Vapor Deposition vol.1203, pp.1946-4274, 2009, https://doi.org/10.1557/PROC-1203-J05-03
  2. Shedding light on the laser wavelength effect in Raman analysis of skin epidermises vol.137, pp.18, 2012, https://doi.org/10.1039/c2an16115j
  3. Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth: Experimental and theoretical study vol.209, pp.9, 2002, https://doi.org/10.1002/pssa.201200581
  4. Conductive Metal-Organic Framework Thin Film Hybrids by Electropolymerization of Monosubstituted Acetylenes vol.12, pp.27, 2002, https://doi.org/10.1021/acsami.0c07036