DOI QR코드

DOI QR Code

CH4 Dry Reforming on Alumina-Supported Nickel Catalyst


Abstract

CH4/CO2 dry reforming was carried out to make syn gas on the Ni/Al2O3 catalysts calcined at different temperatures. The Ni/Al2O3 (850 $^{\circ}C)$ catalyst gave good activity and stability w hereas the Ni/Al2O3 $(450^{\circ}C)$ catalyst showed lower activity and stability. The NiO/Al2O3 catalyst calcined at $850^{\circ}C$ for 16 h (Ni/Al2O3 $(850^{\circ}C))$ formed the spinel structure of nickel aluminate, which was confirmed by TPR. The carbon formation rate on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was very low till 20 h, and then steeply increased with reaction time without decreasing the activity for CH4 reforming. The Ni/Al2O3 $(450^{\circ}C)$ catalyst showed high carbon formation rate at the initial reaction time and then, the rate nearly stopped with continuous decreasing the activity for CH4 reforming. Even though the amount of carbon deposition on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was higher than that on the Ni/Al2O3 $(450^{\circ}C)$ catalyst, the activity for CH4ing was also high, which could be attributed to the different type of the carbon formed on the catalyst surface.

Keywords

References

  1. Jung, K. S.; Coh, B. Y.; Lee, H. I. Bull. Korean Chem. Soc. 1999,20, 89.
  2. Wurzel, T.; Malcus, S.; Mleczko, L. Chem. Eng. Sci. 2000, 55,3955. https://doi.org/10.1016/S0009-2509(99)00444-3
  3. Wang, H. Y.; Ruckenstein, E. Appl. Catal. 2000, 204, 143. https://doi.org/10.1016/S0926-860X(00)00547-0
  4. Luo, J. Z.; Yu, Z. L.; Ng, C. F.; Au, C. T. J. Catal. 2000, 194,198. https://doi.org/10.1006/jcat.2000.2941
  5. Tang, S.; Ji, L.; Zeng, H. C.; Tan, K. L.; Li, K. J. Catal. 2000, 194,424. https://doi.org/10.1006/jcat.2000.2957
  6. Zhang, Z. L.; Tsipouriari, Z. A.; Efstathiou, A. M.; Verykios, X. E.J. Catal. 1996, 158, 516.
  7. Ashcroft, A. T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D.F. Nature 1991, 352, 225. https://doi.org/10.1038/352225a0
  8. Richardson, J. T.; Paripatyadar, S. A. Appl. Catal. 1990, 61,293. https://doi.org/10.1016/S0166-9834(00)82152-1
  9. Stagg, S. M.; Romeo, E.; Padro, C.; Resasco, D. E. J. Catal. 1998,178, 137. https://doi.org/10.1006/jcat.1998.2146
  10. Bitter, J. H.; Seshan, K.; Lercher, J. A. J. Catal. 1999, 183, 336. https://doi.org/10.1006/jcat.1999.2402
  11. Bradford, M. C. J.; Vannice, M. A. J. Catal. 1998, 173, 157. https://doi.org/10.1006/jcat.1997.1910
  12. Tang, S.; Lin, J.; Tan, K. L. Catal. Lett. 1999, 59, 129. https://doi.org/10.1023/A:1019001428159
  13. Osaki, T.; Mori, T. J. Catal. 2001, 204, 89. https://doi.org/10.1006/jcat.2001.3382
  14. Kepinski, L.; Stasinska, B.; Borowiecki, T. Carbon 2000, 38,1845. https://doi.org/10.1016/S0008-6223(00)00017-8
  15. Scheffer, B.; Molhoek, P.; Moulijn, J. A. Appl. Catal. 1989, 46,11. https://doi.org/10.1016/S0166-9834(00)81391-3
  16. Arnoldy, P.; Moulijn, J. A. J. Catal. 1985, 93, 38. https://doi.org/10.1016/0021-9517(85)90149-6
  17. Mangnus, P. J.; Bos, A.; Moulijn, J. A. J. Catal. 1994, 146,437. https://doi.org/10.1006/jcat.1994.1081
  18. Chen, Y. G.; Ren, J. Catal. Lett. 1994, 29, 39. https://doi.org/10.1007/BF00814250
  19. Bhattacharyya, A.; Chang, V. W. Stud. Surf. Sci. Catal. 1994, 88,616.
  20. Srivastava, R. D.; Onuferko, J.; Schultz, J. M. Ind. Eng. Chem.Fundam. 1982, 21, 457. https://doi.org/10.1021/i100008a025
  21. Kim, C. K.; Joo, O. S. unpublished results.
  22. Carbon Nanotubes: Preparation and Properties; Ebbesen, T. W.,Ed.; CRC Press, Inc.: 1997.
  23. Rostrup-Nielsen, J. R. In Catalysis Science and Technology;Springer-Verlag: Berlin, 1984; pp 1-118.
  24. Baird, T.; Fryer, J. R.; Grant, B. Carbon 1974, 12, 591. https://doi.org/10.1016/0008-6223(74)90060-8
  25. Baird, T.; Fryer, J. R.; Grant, B. Nature 1971, 233, 329.
  26. Baker, R. T. K.; Chludzinski, J. J.; Lund, C. R. F. In ExtendedAbstracts of the 18th Biennial Conference on Carbon; July 19-24,Worcester Polytechnic Institute: 1987; p 155.
  27. Tibbetts, G. G.; Devour, M. G.; Rodda, E. J. Carbon 1987, 25,367. https://doi.org/10.1016/0008-6223(87)90008-X

Cited by

  1. Evaluation of Preoxidized SUS304 as a Catalyst for Hydrocarbon Reforming vol.2013, pp.2314-6419, 2013, https://doi.org/10.1155/2013/289071
  2. Sustainable Production of Synthesis Gases via State of the Art Metal Supported Catalytic Systems: An Overview vol.60, pp.11, 2013, https://doi.org/10.1002/jccs.201300276
  3. catalysts for dry reforming of methane vol.16, pp.2, 2014, https://doi.org/10.1039/C3GC41782D
  4. Investigation of Coking During Dry Reforming of Methane by Means of Thermogravimetry vol.86, pp.11, 2014, https://doi.org/10.1002/cite.201400092
  5. Methane Steam Reforming on Supported Nickel, Effect of Nickel Content for Product Hydrogen vol.06, pp.02, 2016, https://doi.org/10.4236/ojpc.2016.62003
  6. Syngas production from methane dry reforming over Ni/Al2O3 catalyst vol.42, pp.1, 2016, https://doi.org/10.1007/s11164-015-2395-5
  7. The Influence of the Pyrolysis Temperature on the Material Properties of Cobalt and Nickel Containing Precursor Derived Ceramics and their Catalytic Use for CO2 Methanation and Fischer–Tropsch Synthesis vol.147, pp.2, 2017, https://doi.org/10.1007/s10562-016-1919-y
  8. Investigation of Suitable Pretreatment for Dry Reforming of Methane Over Ni/Al2O3 vol.233-235, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.233-235.1665
  9. Kinetic Study on Solid-Phase Reduction of Silica-Supported Nickel Oxide Species vol.88, pp.12, 2015, https://doi.org/10.1246/bcsj.20150243
  10. Plasma Assisted Catalytic Conversion of CO2 and H2O Over Ni/Al2O3 in a DBD Reactor vol.39, pp.1, 2019, https://doi.org/10.1007/s11090-018-9931-1
  11. Accumulation of the Carbonaceous Species on the Ni/Al2O3 Catalyst during CO2 Reforming of Methane vol.24, pp.11, 2002, https://doi.org/10.5012/bkcs.2003.24.11.1623
  12. Role and effect of molybdenum on the performance of Ni-Mo/γ-Al2O3 catalysts in the hydrogen production by auto-thermal reforming of ethanol vol.261, pp.2, 2002, https://doi.org/10.1016/j.molcata.2006.08.030
  13. Comparison of ceramic honeycomb monolith and foam as Ni catalyst carrier for methane autothermal reforming vol.155, pp.1, 2002, https://doi.org/10.1016/j.cattod.2009.01.021
  14. The role of Ni species in the deoxygenation of rapeseed oil over NiMo-alumina catalysts vol.397, pp.1, 2002, https://doi.org/10.1016/j.apcata.2011.02.022
  15. Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİND vol.22, pp.1, 2002, https://doi.org/10.17482/uumfd.305187
  16. Effect of Preparation Technique on the Performance of Ni and Ce Incorporated Modified Alumina Catalysts in CO2 Reforming of Methane vol.150, pp.11, 2002, https://doi.org/10.1007/s10562-020-03228-6
  17. Synthesis gas production by dry reforming of methane over Neodymium-modified hydrotalcite-derived nickel catalysts vol.227, pp.None, 2022, https://doi.org/10.1016/j.fuproc.2021.107104