References
- Jung, K. S.; Coh, B. Y.; Lee, H. I. Bull. Korean Chem. Soc. 1999,20, 89.
- Wurzel, T.; Malcus, S.; Mleczko, L. Chem. Eng. Sci. 2000, 55,3955. https://doi.org/10.1016/S0009-2509(99)00444-3
- Wang, H. Y.; Ruckenstein, E. Appl. Catal. 2000, 204, 143. https://doi.org/10.1016/S0926-860X(00)00547-0
- Luo, J. Z.; Yu, Z. L.; Ng, C. F.; Au, C. T. J. Catal. 2000, 194,198. https://doi.org/10.1006/jcat.2000.2941
- Tang, S.; Ji, L.; Zeng, H. C.; Tan, K. L.; Li, K. J. Catal. 2000, 194,424. https://doi.org/10.1006/jcat.2000.2957
- Zhang, Z. L.; Tsipouriari, Z. A.; Efstathiou, A. M.; Verykios, X. E.J. Catal. 1996, 158, 516.
- Ashcroft, A. T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D.F. Nature 1991, 352, 225. https://doi.org/10.1038/352225a0
- Richardson, J. T.; Paripatyadar, S. A. Appl. Catal. 1990, 61,293. https://doi.org/10.1016/S0166-9834(00)82152-1
- Stagg, S. M.; Romeo, E.; Padro, C.; Resasco, D. E. J. Catal. 1998,178, 137. https://doi.org/10.1006/jcat.1998.2146
- Bitter, J. H.; Seshan, K.; Lercher, J. A. J. Catal. 1999, 183, 336. https://doi.org/10.1006/jcat.1999.2402
- Bradford, M. C. J.; Vannice, M. A. J. Catal. 1998, 173, 157. https://doi.org/10.1006/jcat.1997.1910
- Tang, S.; Lin, J.; Tan, K. L. Catal. Lett. 1999, 59, 129. https://doi.org/10.1023/A:1019001428159
- Osaki, T.; Mori, T. J. Catal. 2001, 204, 89. https://doi.org/10.1006/jcat.2001.3382
- Kepinski, L.; Stasinska, B.; Borowiecki, T. Carbon 2000, 38,1845. https://doi.org/10.1016/S0008-6223(00)00017-8
- Scheffer, B.; Molhoek, P.; Moulijn, J. A. Appl. Catal. 1989, 46,11. https://doi.org/10.1016/S0166-9834(00)81391-3
- Arnoldy, P.; Moulijn, J. A. J. Catal. 1985, 93, 38. https://doi.org/10.1016/0021-9517(85)90149-6
- Mangnus, P. J.; Bos, A.; Moulijn, J. A. J. Catal. 1994, 146,437. https://doi.org/10.1006/jcat.1994.1081
- Chen, Y. G.; Ren, J. Catal. Lett. 1994, 29, 39. https://doi.org/10.1007/BF00814250
- Bhattacharyya, A.; Chang, V. W. Stud. Surf. Sci. Catal. 1994, 88,616.
- Srivastava, R. D.; Onuferko, J.; Schultz, J. M. Ind. Eng. Chem.Fundam. 1982, 21, 457. https://doi.org/10.1021/i100008a025
- Kim, C. K.; Joo, O. S. unpublished results.
- Carbon Nanotubes: Preparation and Properties; Ebbesen, T. W.,Ed.; CRC Press, Inc.: 1997.
- Rostrup-Nielsen, J. R. In Catalysis Science and Technology;Springer-Verlag: Berlin, 1984; pp 1-118.
- Baird, T.; Fryer, J. R.; Grant, B. Carbon 1974, 12, 591. https://doi.org/10.1016/0008-6223(74)90060-8
- Baird, T.; Fryer, J. R.; Grant, B. Nature 1971, 233, 329.
- Baker, R. T. K.; Chludzinski, J. J.; Lund, C. R. F. In ExtendedAbstracts of the 18th Biennial Conference on Carbon; July 19-24,Worcester Polytechnic Institute: 1987; p 155.
- Tibbetts, G. G.; Devour, M. G.; Rodda, E. J. Carbon 1987, 25,367. https://doi.org/10.1016/0008-6223(87)90008-X
Cited by
- Evaluation of Preoxidized SUS304 as a Catalyst for Hydrocarbon Reforming vol.2013, pp.2314-6419, 2013, https://doi.org/10.1155/2013/289071
- Sustainable Production of Synthesis Gases via State of the Art Metal Supported Catalytic Systems: An Overview vol.60, pp.11, 2013, https://doi.org/10.1002/jccs.201300276
- catalysts for dry reforming of methane vol.16, pp.2, 2014, https://doi.org/10.1039/C3GC41782D
- Investigation of Coking During Dry Reforming of Methane by Means of Thermogravimetry vol.86, pp.11, 2014, https://doi.org/10.1002/cite.201400092
- Methane Steam Reforming on Supported Nickel, Effect of Nickel Content for Product Hydrogen vol.06, pp.02, 2016, https://doi.org/10.4236/ojpc.2016.62003
- Syngas production from methane dry reforming over Ni/Al2O3 catalyst vol.42, pp.1, 2016, https://doi.org/10.1007/s11164-015-2395-5
- The Influence of the Pyrolysis Temperature on the Material Properties of Cobalt and Nickel Containing Precursor Derived Ceramics and their Catalytic Use for CO2 Methanation and Fischer–Tropsch Synthesis vol.147, pp.2, 2017, https://doi.org/10.1007/s10562-016-1919-y
- Investigation of Suitable Pretreatment for Dry Reforming of Methane Over Ni/Al2O3 vol.233-235, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.233-235.1665
- Kinetic Study on Solid-Phase Reduction of Silica-Supported Nickel Oxide Species vol.88, pp.12, 2015, https://doi.org/10.1246/bcsj.20150243
- Plasma Assisted Catalytic Conversion of CO2 and H2O Over Ni/Al2O3 in a DBD Reactor vol.39, pp.1, 2019, https://doi.org/10.1007/s11090-018-9931-1
- Accumulation of the Carbonaceous Species on the Ni/Al2O3 Catalyst during CO2 Reforming of Methane vol.24, pp.11, 2002, https://doi.org/10.5012/bkcs.2003.24.11.1623
- Role and effect of molybdenum on the performance of Ni-Mo/γ-Al2O3 catalysts in the hydrogen production by auto-thermal reforming of ethanol vol.261, pp.2, 2002, https://doi.org/10.1016/j.molcata.2006.08.030
- Comparison of ceramic honeycomb monolith and foam as Ni catalyst carrier for methane autothermal reforming vol.155, pp.1, 2002, https://doi.org/10.1016/j.cattod.2009.01.021
- The role of Ni species in the deoxygenation of rapeseed oil over NiMo-alumina catalysts vol.397, pp.1, 2002, https://doi.org/10.1016/j.apcata.2011.02.022
- Ni-Co İÇERİKLİ BİMETALİK KATALİZÖRLERİN METANIN KURU REFORMLANMA REAKSİYONUNDAKİ PERFORMANSLARINA KATALİZÖR SENTEZ SÜRECİND vol.22, pp.1, 2002, https://doi.org/10.17482/uumfd.305187
- Effect of Preparation Technique on the Performance of Ni and Ce Incorporated Modified Alumina Catalysts in CO2 Reforming of Methane vol.150, pp.11, 2002, https://doi.org/10.1007/s10562-020-03228-6
- Synthesis gas production by dry reforming of methane over Neodymium-modified hydrotalcite-derived nickel catalysts vol.227, pp.None, 2022, https://doi.org/10.1016/j.fuproc.2021.107104