DOI QR코드

DOI QR Code

Mass-analyzed Threshold Ionization Spectrometry with Scrambling Field Optimized for the Study of State-selective Ion Reaction Dynamics


Abstract

Mass-analyzed threshold ionization (MATI) technique is optimized to generate substantial amount of state-selected molecular ions sufficient for dynamics study. The main strategy is to stabilize intermediate (n = 100- 200) Rydberg states by l,m-mix ing induced by AC field. Electrical jitter inherent in high voltage switching is utilized for this purpose. A related technique to locate the MATI onset is also described.

Keywords

References

  1. NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 245, Selectivity in Chemical Reactions; Whitehead, J. C., Eds.; Kluwer Academic Publishers: Dordrecht, Netherlands, 1988.
  2. Mode Selective Chemistry; Jortner, J.; Levine, R. D.; Pullman, B., Eds.; Kluwer Academic Publishers: Dordrecht, Netherlands, 1991.
  3. Levine, R. D.; Bernstein, R. B. Molecular Reaction Dynamics and Chemical Reactivity; Oxford University Press: New York, U.S.A., 1987.
  4. Brumer, P.; Shapiro, M. Chem. Phys. Lett. 1986, 126, 541 https://doi.org/10.1016/S0009-2614(86)80171-3
  5. Brumer, P.; Shapiro, M. Annu. Rev. Phys. Chem. 1992, 43, 257 https://doi.org/10.1146/annurev.pc.43.100192.001353
  6. Zhu, L. et al. Science 1995, 270, 77. https://doi.org/10.1126/science.270.5233.77
  7. Tannor, D. J.; Rice, S. A. J. Chem. Phys. 1985, 83, 5013 https://doi.org/10.1063/1.449767
  8. Kosloff, R.; Rice, S. A.; Gaspard, P.; Tersgini, S.; Tannor, D. J. Chem. Phys. 1989, 139, 201 https://doi.org/10.1016/0301-0104(89)90012-8
  9. Assion, A. et al. Science 1998, 282, 919. https://doi.org/10.1126/science.282.5390.919
  10. Vander Wal, R. L.; Scott, J. L.; Crim, F. F. J. Chem. Phys. 1990, 92, 803 https://doi.org/10.1063/1.458383
  11. Brown, S. S.; Berghout, H. L.; Crim, F. F. J. Chem. Phys. 1995, 102, 8440 https://doi.org/10.1063/1.468835
  12. Crim, F. F. J. Phys. Chem. 1996, 100, 12725. https://doi.org/10.1021/jp9604812
  13. Atomic and Molecular Beam Methods; Scoles, G., Eds.; Oxford University Press: New York, U.S.A., 1988.
  14. Advanced Series in Physical Chemistry, Vol. 10A/B, Photoionization and Photodetachment; Ng, C.-Y., Eds.; World Scientific: River Edge, U.S.A., 2000
  15. Wiley Series in Ion Chemistry and Physics; High Resolution Laser Photoionization and Photoelectron Studies; Powis, I.; Baer, T.; Ng, C. Y., Eds.; Wiley: New York, U.S.A., 1995
  16. Letokhov, V. S. Laser Photoionization Spectroscopy; Academic: Orlando, U.S.A., 1987
  17. Berkowitz, J. Photoabsorption, Photoionization, and Photoelectron Spectroscopy; Academic: New York, U.S.A., 1979.
  18. Boesl, U.; Neusser, H. J.; Schlag, E. W. Z. Naturforsch. A 1978, 33, 1546
  19. Zandee, L.; Bernstein, R. B.; Lichtin, D. A. J. Chem. Phys. 1978, 69, 3427. https://doi.org/10.1063/1.436952
  20. Brehm, B.; von Puttkamer, E. Z. Naturforsch. Teil 1967, A22, 8
  21. Gas Phase Ion Chemistry; Bowers, M. T., Eds.; Academic: New York, U.S.A., 1979; Vol. 1, Chap. 5
  22. Dannacher, J. Org. Mass Spectrom. 1984, 19, 253 https://doi.org/10.1002/oms.1210190602
  23. Baer, T. Annu. Rev. Phys. Chem. 1989, 40, 637 https://doi.org/10.1146/annurev.pc.40.100189.003225
  24. Hsu, C.-W.; Lu, K. T.; Evans, M.; Chen, Y. J.; Ng, C.-Y.; Heimann, P. J. Chem. Phys. 1996, 105, 3950. https://doi.org/10.1063/1.472268
  25. Munson, M. S. B.; Field, F. H. J. Am. Chem. Soc. 1966, 88, 2621 https://doi.org/10.1021/ja00964a001
  26. Harrison, A. G. Chemical Ionization Mass Spectrometry; CRC: Boca Raton, U.S.A., 1983.
  27. Schlag, E. W. ZEKE Spectroscopy; Cambridge University Press: Cambridge, U.K., 1998
  28. Muller-Dethlefs, K.; Sander, M.; Schlag, E. W. Chem. Phys. Lett. 1984, 112, 291. https://doi.org/10.1016/0009-2614(84)85743-7
  29. Reiser, G.; Habenicht, W.; Müller-Dethlefts, K.; Schlag, E. W. Chem. Phys. Lett. 1988, 152, 119. https://doi.org/10.1016/0009-2614(88)87340-8
  30. Chupka, W. A. J. Chem. Phys. 1993, 98, 4520 https://doi.org/10.1063/1.465011
  31. Chupka, W. A. J. Chem. Phys. 1993, 99, 5800 https://doi.org/10.1063/1.465931
  32. Even, U.; Ben-Nun, M.; Levine, R. D. Chem. Phys. Lett. 1993, 210, 416. https://doi.org/10.1016/0009-2614(93)87047-7
  33. Zhu, L.; Johnson, P. J. Chem. Phys. 1991, 94, 5769. https://doi.org/10.1063/1.460460
  34. Park, S. T.; Kim, S. K.; Kim, M. S. Nature 2002, 415, 306 https://doi.org/10.1038/415306a
  35. Park, S. T.; Kim, M. S. J. Chem. Phys. 2002, 117, 124 https://doi.org/10.1063/1.1480006
  36. Park, S. T.; Kim, M. S. J. Chem. Phys. (submitted)
  37. Park, S. T.; Kim, M. S. J. Am. Chem. Soc. 2002, 124, 7614. https://doi.org/10.1021/ja025791e
  38. Park, S. T.; Kim, S. K.; Kim, M. S. J. Chem. Phys. 2001, 114, 5568 https://doi.org/10.1063/1.1353548
  39. Park, S. T.; Kim, S. K.; Kim, M. S. J. Chem. Phys. 2001, 115, 2492. https://doi.org/10.1063/1.1386786
  40. Hilber, G.; Lago, A.; Wallenstein, R. J. Opt. Soc. Am. B 1987, 4, 1753 https://doi.org/10.1364/JOSAB.4.001753
  41. Marangos, J. P.; Shen, N.; Ma, H.; Hutchinson, M. H. R.; Connerade, J. P. J. Opt. Soc. Am. B 1990, 7, 1254. https://doi.org/10.1364/JOSAB.7.001254
  42. Meyer, S. A.; Faris, G. W. Opt. Lett. 1998, 23, 204. https://doi.org/10.1364/OL.23.000204
  43. Nir, E.; Hunziker, H. E.; De Vris, M. S. Anal. Chem. 1999, 71, 1674. https://doi.org/10.1021/ac981383a
  44. Bahatt, D.; Even, U.; Levine, R. D. J. Chem. Phys. 1993, 98, 1744 https://doi.org/10.1063/1.464289
  45. Scherzer, W. G.; Selzle, H. L.; Schlag, E. W.; Levine, R. D. Phys. Rev. Lett. 1994, 72, 1435 https://doi.org/10.1103/PhysRevLett.72.1435
  46. Even, U.; Levine, R. D.; Bersohn, R. J. Phys. Chem. 1994, 98, 3472. https://doi.org/10.1021/j100064a032
  47. Held, A.; Baranov, L. Y.; Selzle, H. L.; Schlag, E. W. Z. Naturforsch. A 1993, 48, 1256.
  48. Bordas, C.; Brevet, P. F.; Broyer, M.; Chevaleyre, J.; Labastie, P.; Perrot, J. P. Phys. Rev. Lett. 1988, 60, 917. https://doi.org/10.1103/PhysRevLett.60.917
  49. Merkt, F.; Zare, R. N. J. Chem. Phys. 1994, 101, 3495 https://doi.org/10.1063/1.467534
  50. Merkt, F.; Xu, H.; Zare, R. N. J. Chem. Phys. 1996, 104, 950 https://doi.org/10.1063/1.470818
  51. Merkt, F. Annu. Rev. Phys. Chem. 1997, 48, 675. https://doi.org/10.1146/annurev.physchem.48.1.675
  52. Vrakking, M. J. J.; Lee, Y. T. J. Chem. Phys. 1995, 102, 8818 https://doi.org/10.1063/1.468935
  53. Vrakking, M. J. J.; Lee, Y. T. J. Chem. Phys. 1995, 102, 8833 https://doi.org/10.1063/1.468936
  54. Vrakking, M. J. J.; Fischer, I.; Villeneuve, D. M.; Stolow, A. J. Chem. Phys. 1995, 103, 4538 https://doi.org/10.1063/1.470642
  55. Vrakking, M. J. J.; Lee, Y. T. Phys. Rev. A 1995, 51, R894 https://doi.org/10.1103/PhysRevA.51.R894
  56. Vrakking, M. J. J. J. Chem. Phys. 1996, 105, 7336 https://doi.org/10.1063/1.472592
  57. Vrakking, M. J. J. Phil. Trans. R. Soc. London Ser. A 1997, 355, 1693. https://doi.org/10.1098/rsta.1997.0084
  58. Scherzer, W. G.; Selzle, H. L.; Schlag, E. W. Z. Naturforsch. A 1993, 48, 1256
  59. Nemeth, G. I.; Ungar, H.; Yeretzian, C.; Selzle, H. L.; Schlag, E. W. Chem. Phys. Lett. 1994, 228, 1 https://doi.org/10.1016/0009-2614(94)00904-X
  60. Scherzer, W. G.; Selzle, H. L.; Schlag, E. W.; Levine, R. D. Phys. Rev. Lett. 1994, 72, 1435 https://doi.org/10.1103/PhysRevLett.72.1435
  61. Alt, C.; Scherzer, W. G.; Selzle, H. L.; Schlag, E. W. Chem. Phys. Lett. 1995, 240, 457 https://doi.org/10.1016/0009-2614(95)00560-Q
  62. Ramacle, F.; Levine, R. D. J. Chem. Phys. 1996, 104, 1399 https://doi.org/10.1063/1.470907
  63. Held, A.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. 1996, 100, 15314 https://doi.org/10.1021/jp960463k
  64. Remacle, F.; Levine, R. D.; Schlag, E. W.; Selzle, H. L.; Held, A. J. Phys. Chem. 1996, 100, 15320 https://doi.org/10.1021/jp9603804
  65. Held, A.; Baranov, L. Y.; Selzle, H. L.; Schlag, E. W. J. Chem. Phys. 1997, 106, 6848. https://doi.org/10.1063/1.474108
  66. Baranov, L. Y.; Held, A.; Selzle, H. L.; Schlag, E. W. Chem. Phys. Lett. 1998, 291, 311 https://doi.org/10.1016/S0009-2614(98)00614-9
  67. Held, A.; Baranov, L. Y.; Selzle, H. L.; Schlag, E. W. Chem. Phys. Lett. 1998, 291, 318 https://doi.org/10.1016/S0009-2614(98)00615-0
  68. Held, A.; Aigner, U.; Baranov, L.Y.; Selzle, H. L.; Schlag, E. W. Chem. Phys. Lett. 1999, 299, 110 https://doi.org/10.1016/S0009-2614(98)01253-6
  69. Aigner, U.; Baranov, L. Y.; Selzle, H. L.; Schlag, E. W. J. Electr. Spectrosc. Relat. Phen. 2000, 112, 175. https://doi.org/10.1016/S0368-2048(00)00211-5
  70. Procter, S. R.; Webb, M. J.; Softley, T. P. Faraday Discuss. 2000, 115, 277 https://doi.org/10.1039/a909489j
  71. Softley, T. P.; Rednall, R. J. J. Chem. Phys. 2000, 112, 7992. https://doi.org/10.1063/1.481423
  72. Jones, R. R.; Fu, P.; Gallagher, T. F. J. Chem. Phys. 1997, 106, 3578 https://doi.org/10.1063/1.473453
  73. Bellomo, P.; Farrelly, D.; Uzer, T. J. Chem. Phys. 1998, 108, 402 https://doi.org/10.1063/1.475401
  74. Murgu, E.; Martin, J. D. D.; Gallagher, T. F. J. Chem. Phys. 2000, 113, 1321. https://doi.org/10.1063/1.481922

Cited by

  1. The study of state-selected ion-molecule reactions using the vacuum ultraviolet pulsed field ionization-photoion technique vol.125, pp.13, 2006, https://doi.org/10.1063/1.2207609
  2. Applications of molecular Rydberg states in chemical dynamics and spectroscopy vol.23, pp.1, 2004, https://doi.org/10.1080/01442350310001652940
  3. One-photon mass-analyzed threshold ionization spectroscopy of 1,3,5-trifluorobenzene: The Jahn-Teller effect and vibrational analysis for the molecular cation in the ground electronic state vol.121, pp.6, 2004, https://doi.org/10.1063/1.1765655
  4. Generated by Mass-Analyzed Threshold Ionization for Structure Determination vol.9, pp.12, 2008, https://doi.org/10.1002/cphc.200800207
  5. One-photon mass-analyzed threshold ionization spectroscopy of 2-chloropropene (2-C3H5Cl) and its vibrational assignment based on the density-functional theory calculations vol.123, pp.4, 2002, https://doi.org/10.1063/1.1988310
  6. One-Photon Mass-Analyzed Threshold Ionization Spectroscopy (MATI) oftrans-Dichloroethylene (trans-C2H2Cl2): Cation Structure Determination via Franck−Condon Fit vol.110, pp.27, 2002, https://doi.org/10.1021/jp056347b
  7. One-photon mass-analyzed threshold ionization spectroscopy (MATI) of cis-dichloroethylene (cis-C2H2Cl2): Cation structure determination via Franck–Condon fit vol.267, pp.1, 2002, https://doi.org/10.1016/j.ijms.2007.02.025
  8. Spectroscopic Investigation of cis-2,4-Difluorophenol Cation by Mass-analyzed Threshold Ionization Spectroscopy vol.35, pp.3, 2014, https://doi.org/10.5012/bkcs.2014.35.3.815
  9. Innovative mass spectrometer for high-resolution ion spectroscopy vol.155, pp.16, 2002, https://doi.org/10.1063/5.0066348