Synthesis of Tetracyclic Pyrido[2,3-b]azepine Derivatives as Analogues of Mirtazapine via N -Acyliminium Ion Cyclization

Jae Yeol Lee, ${ }^{*}$ Sung Hun Bang, ${ }^{*}$ Sook Ja Lee, ${ }^{*}$ Yun Seon Song, Changbae Jin, Hokoon Park, and Yong Sup Lee*
Division of Life Sciences, Korea Institute of Science \&Technolog. P.O. Box 131, Cheongryang, Seod 130-650, Korea ${ }^{-}$Department of Chemisny, Ilonkuk University of Foreign Studies. Yong-in $49-791$, Korea Received August 13, 2002

Abstract

 acyliminium ion cyelization by using aromatio rings such as bentene and thiophene ring as a π-nueleophile, fold less binding allinity than mirtazapine $(\mathrm{Ki}=0.08 \mu \mathrm{M})$ for α_{2}-adrenoceptor.

Key Words: Pyrido[2,3-h]azepine, A-Acy liminium ion cyclization, α_{2}-Adrenoceptor, Mirtazapine

Introduction

Tetracyclic azepines are presented as an important class of heterocyclic skeletons occurring in a number of bioactive molecules for a varicty of biological targets ${ }^{1}$ and form. in particular. the tetracyclic antidepressants such as mianserin (1. Bolvidon ${ }^{\text {is }}$) and mirtazapine (2. Remeron ${ }^{\text {k }}$): Mirlarapine entances noradrenaline (NA) and scrotonin ($5-\mathrm{HT}$) release by blocking the inhibitory presynaptic α_{2}-adrenergic autoreceptors and stimulating the $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptors. ${ }^{-3}$ Therefore. many synthetic efforts have been directed toward synthesis of tetracyclic arepine derivatives because of their unique structural features and biological activitics. ${ }^{1}$ Recently. we bave also reported the synthesis of dibenvo[c;fazepine and benzo[f]thieno[3.2-clazepine derivatives (3) as analogues of mianserins, ${ }^{5}$
In this work. we wish to describe the synthesis and the binding aflinities of tetracyclic pyrido[2.3-b]arepine derivatives 4 for α_{2}-adrenoceptor as analogues of mirtazapine including the binding affinitics data of benzoplazepine derivalives 3 .

1 mianserin

3

2 mirtazapine

4

Figure 1. Representative letracyclic azepine compounds.

Experimental Section

Materials and measurements. All compounds used in the synthesis were of reagent grade and used without further purification. and the solvents were freshly distilled by using standard purification methods. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Gemini Varian-300 ($300 \mathrm{MH} \%$) spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Gemini Varian-300 (75 MȞ) spectrometer. Infrared (IR) spectm were recorded on Perkin Elmer 16-PC FT-IR using a potassium bromide pellet. Low (EI) resolution mass spectra were determined on HP GC 5972 and HP MS 5988A system at 70 cV . Dibenzo[c, flazepines (3a-b) and benzo[flthieno 3.2 -c]azepines ($\mathbf{3 c}$ d) were obtained by the procedure reported in the literature. ${ }^{5}$

General procedure for the preparation of eyclic imides (6a-f). To a solution of 3-ben/yl-2-aminopyridine (5 a .2 .9 g . 15.2 mmol) in 50 mL of sylenc was added succinic anlydride (2.3 g .22 .9 mmol). The reaction mixture was heated at reflux for 5 ll with Dean-Stark. After cooling to room temperature. the Dcan-Stark was removed and acetyl chloride (2.7 mL .30 .5 mmol) was added to the mixture. The reaction mixture was heated again at reflex for 3 h . The solvent was distilled off under reduced pressure and the residue was dissolved in 100 mL of EIOAc. The organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{\text {i }}$ solution. dried over MgSO_{4}. concentrated. and purified by flash column chromatography (E1OAc/n-hexane $=1 ; 3$) to afford 6a ($3.1 \mathrm{~g} .75 \%$) as a white solid: $\mathrm{mp} 128-130^{\circ} \mathrm{C}$: MS m / z : $266\left(\mathrm{M}^{-}\right)$: $\mathrm{IR}(\mathrm{KBr}) 3018.1790 .1712 .1578 \mathrm{~cm}{ }^{1}$: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MH} \% \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{dd} . J=+.7 .1 .6 \mathrm{H} \% .1 \mathrm{H}$. pyridine $\mathrm{C} 2-\mathrm{H}) .7 .63(\mathrm{dd} . J=7.7 .1 .2 \mathrm{H} \% 1 \mathrm{H}$. pyridine $\mathrm{C}+\mathrm{H}) .7 .35-$ 7.19 (m. +H . pyridine $\mathrm{C} 3-\mathrm{H}$. phenyl). 7.06 (d. $J=6.5 \mathrm{H} \%$. 2 H . plenyl). 3.92 (s. 2 H . pyridinc- $\mathrm{CH}_{2}-\mathrm{Ar}$). 2.72 (m. 2 H . $2 \times-\mathrm{N}-\mathrm{CO}-\mathrm{CH}_{n}-$). 2.52 (m. $2 \mathrm{H} .2 \times-\mathrm{N}-\mathrm{CO}-\mathrm{CH}_{\mathrm{b}}-$): ${ }^{13} \mathrm{C} \mathrm{NMR}$ ($75 \mathrm{MH} \% \mathrm{CDCl}_{3}$) $\delta 175.7 .148 .4 .1+5.7 .1+0.5 .138 .3$. 135.1. 129.1. 127.3. 127.2. 125.1. 37.8. 28.9.

Preparation of $\mathbf{6 b}$. The reaction of $\mathbf{5 a}(\mathbf{4 0 0} \mathbf{~ m g} .2 .2$ mmol) and glutaric anlyydride (374 mg .3 .3 mmol) afforded 6b ($23.3 \mathrm{mg} .38 \%$) as a white solid according to the pro-
cedure described above: mp $102-103^{\circ} \mathrm{C}$; MS m/z: $280(\mathrm{M})$: IR (KBr) 3395. 2917, 1735, 1686. 1434 cm^{-1} : ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.48$ (d. $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$. pyridine $\mathrm{C} 2-\mathrm{H}$). 7.53 (d. $J=7.6 \mathrm{~Hz}, \mathrm{lH}$, py ridine $\mathrm{C}+\mathrm{H}$), $7.32-7.23$ (111. 5 H . phenyl). 7.11 (d. $J=7.5 \mathrm{~Hz}$. lH. pyridine C3-H). 3.82 (s. 2 H . pyridine-C $\underline{H}_{z}-\mathrm{Ar}$), 2.81-2.55 (m, $4 \mathrm{H}, 2 \times \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-$), 2.12-1. 94 (im. $2 \mathrm{H} . \mathrm{O}=\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{z}-$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ 178.0. 153.9. 152.7. 144.7. 144.3. 140.4. 134.7. 134.4. 133.9. 131.9. 129.8. +1.3. 37.5. 22.4.

Preparation of 6 c . Prepared from $5 \mathrm{a}(1.64 \mathrm{~g} .8 .9 \mathrm{mmol})$ and diglycolic anlỵdride (1.56 g .13 .4 mmol) as described above. A yellow oil ($1.05 \mathrm{~g} .41 \%$): MS m/z: $282\left(\mathrm{M}^{\prime}\right)$; IR (KBr) 3425. 2924. $1696,1581 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d} . J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$. pyridine $\mathrm{C} 2-\mathrm{H}) .7 .62(\mathrm{~d} . J$ $=7.7 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C}+-\mathrm{H}$). $7.37-7.13$ (m. 5 H , pheryl), $7.12(\mathrm{~d} . J=7.0 \mathrm{~Hz} . \mathrm{lH}$. pyridine $\mathrm{C} 3-\mathrm{H}) .4 .4 \mathrm{l}$ and $4.31(\mathrm{ABq}$. $J=16.5 \mathrm{~Hz} .2 \mathrm{H}$. pyridine-CHz-Ar). 3.87 (s. $4 \mathrm{H} .2 \times \mathrm{O}=\mathrm{C}-$ $\mathrm{CH}_{2}-\mathrm{O}-$): ${ }^{1.3} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,156.4,148.1$. 140.1. 139.1. 129.6. 129.1. 128.9. 127.1. 125.5. 67.5, 36.3.

Preparation of 6d. Prepared from 5 a (600 mg .3 .3 mmol) and thiodiglycolic anhydride (737 mg .4 .9 mmol) as described above. A brown solid ($461 \mathrm{mg} .47 \%$): mp 83-87 ${ }^{\circ} \mathrm{C}$: MS m/z: 298 (M^{\prime}): IR (KBr) 3395. 2924, 2388.1730. $1686 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{dd}, J=4.7$. 1.7 Hz .1 H . pyridine $\mathrm{C} 2-\mathrm{H}$). 7.53 (dd. $J=7.7 .1 .7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C}+\mathrm{H}$). $7.32-7.23(\mathrm{~m}, 5 \mathrm{H}$, phenyl). $7.13(\mathrm{~d} . J=7.3$ Hz 1H. py ridine $\mathrm{C} 3-\mathrm{H}$). 3.83 ($\mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{S}-$). 3.67 and $3.48\left(\mathrm{ABq}, J=16.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, prridine- $\left.\underline{\mathrm{C}}_{2}-\mathrm{Ar}\right):{ }^{1.3} \mathrm{C}$ NMR (75 MHz. CDCl_{3}) $\delta 168.5$. 148.3. 148.2. 140.0. 138.2. 135.4. 129.7, 129.0, 127.2, 125.0. 37.1, 32.7.

Preparation of 6f. Prepared from $\mathbf{5 b}(2.76 \mathrm{~g}, 14.5 \mathrm{mmol})$ and glutaric anly dride (2.48 g .21 .8 mmol) as described above. A yellow oil ($2.90 \mathrm{~g} .70 \%$): MS m/z: 286 (M'): lR (KBr) 3405. 2926. 1734. 1686. $1581 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (300) $\mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.50$ (dd. $J=4.8 .1 .7 \mathrm{~Hz} .1 \mathrm{H}$, pyridine $\mathrm{C} 3-$ H). 7.71 (d. $J=6.5 \mathrm{~Hz} .1 \mathrm{H}$, py ridine $\mathrm{C}+-\mathrm{H}) .7 .39(\mathrm{dd} . J=$ $7.7 .4 .9 \mathrm{~Hz}, 1 \mathrm{H}$. pyridine $\mathrm{C} 3-\mathrm{H}), 7.18(\mathrm{~d}, J=4.1 \mathrm{~Hz} .1 \mathrm{H}$. thienyl C3-H). 6.94 (dd. $J=5.1,3.5 \mathrm{~Hz} .1 \mathrm{H}$. thienyl $\mathrm{Ct}-\mathrm{H}$). $6.76(\mathrm{~d}, J=3.3 \mathrm{~Hz} .1 \mathrm{H}$, thieny $1 \mathrm{C} 5-\mathrm{H}), 4.0 \mathrm{I}(\mathrm{s}, 2 \mathrm{H}$. pyridine-$\left.\mathrm{CH}_{2}-\mathrm{Ar}\right)$. 2.83-2.70 (m. $+\mathrm{H} .2 \times \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-$). 2.15-1.95 (m. $\left.2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)$.
General procedure for the preparation of hydroxylactams (7a-c). To a stirred solution of $6 \mathbf{a}(3.1 \mathrm{~g} .11 .4 \mathrm{mmol})$ in 40 mL of THF was added DIBAL-H (1M in THF solution. $22.9 \mathrm{~mL}, 22.9 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$. After quenching with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution the reaction misture was filtered through a pad of Celite 545 and the filtrate was extracted with EtOAc. The combined extract was dried over MgSO_{4}. concentrated and purified with column chromatography $(\mathrm{EtOAc} / n$-hexane $=5: \mathrm{I})$ to afford 7 a (2.15 g. 68%) as a pale yellow oil: $\mathrm{IR}(\mathrm{KBr}) 3376,2928.1704$. 1578. $1438 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{7}$) $\delta 8.22$ (d. $. J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}$. pyridine $\mathrm{C} 2-\mathrm{H}$) .7 .55 (d. $J=7.6 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C}+\mathrm{H}$) $.7 .2+-7.14(\mathrm{~m} .4 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}$. phenyl), $7.01(\mathrm{~d} . J=7.6 \mathrm{~Hz} .2 \mathrm{H}$. phenyl). 5.26 and $3.95(\mathrm{ABq} . J=$ 16.3 Hz .2 H. pyridine- $\left.\underline{\mathrm{H}}_{2}-\mathrm{Ar}\right) .2 .70$ (m. $1 \mathrm{H} . \mathrm{O}=\mathrm{C}_{-} \mathrm{CH}_{2}-$
$\mathrm{CH}_{\mathrm{a}}{ }^{-}$). 2.29 (m. $\mathrm{lH}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{6}-$). $1.87\left(\mathrm{~m}, \mathrm{lH},-\mathrm{CH}_{4}-\right.$ $\left.\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{OH}\right), 1.70\left(\mathrm{~m} .1 \mathrm{H},-\mathrm{CH}_{6}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{OH}\right):{ }^{1.3} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 174.0 .151 .0 .146 .2,145.9 .140 .6,139.6$. 133.3, 128.7, 126.7. 122.8. 85.6. 38.2. 29.6.27.t.

Preparation of 7 b and 8 b . Prepared from $\mathbf{6 b}$ (197 mg .0 .7 mmol) as described above: 7 b ($29 \mathrm{mg} .15 \%$) as a yellow solid: $\mathrm{mp} 94-95{ }^{\circ} \mathrm{C}$: $\mathrm{IR}(\mathrm{KBr}) 3335,29+7,2366.1624 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 8.23$ (dd. $J=4.8 .1 .6 \mathrm{~Hz}, \mathrm{IH}$. pyridine $\mathrm{C} 2-\mathrm{H}$). 7.51 (dd, $J=7.6 .1 .0 \mathrm{~Hz} .1 \mathrm{H}$, py ridine $\mathrm{C}+-$ $\mathrm{H}), 7.24-7.10$ (m. 5 H . phenyl), 6.94 (d. $J=7.0 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C} 3-\mathrm{H}) .4 .77\left(\mathrm{t} . J=2.6 \mathrm{~Hz} .1 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{z}-\right)$ 3.90 and 3.79 (ABq, $J=16.2 \mathrm{~Hz}, 2 \mathrm{H}$. pyridine- $\left.\mathrm{CH}_{z}-\mathrm{Ar}\right)$. 2.46 (dd. $J=11.3 .1 .+\mathrm{Hz}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CHa}-2.27-2.21(\mathrm{~m}$. $\left.2 \mathrm{H} . \mathrm{O}=\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 1.72(\mathrm{dd}, J=12.2,2.0 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{O}=\mathrm{C}-$ $\left.\mathrm{CH}_{10}-\right) .1 .57\left(\mathrm{~m} .1 \mathrm{H} .-\mathrm{N}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}-\right) .1 .01(\mathrm{~m} .1 \mathrm{H},-\mathrm{N}-$ $\left.\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{(2-}-\right):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta 171.0 .155 .1$, 146.4, 140.6. 140.0. 134.2. 129.0, 128.8. 126.9. 123.3.82.2. 38.6. 33.1. 28.5, 16.6. 8b (over-reduced product. 59 mg . 30%) as a yellow solid: $\mathrm{mp} 10+{ }^{\circ} \mathrm{C}: \operatorname{IR}(\mathrm{KBr}) 3334.3186$. 2937, 1722, $1656 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18$ (d. $J=3.3 \mathrm{~Hz} .1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}) .7 .46(\mathrm{~d} . J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$. pyridine $\mathrm{C}+\mathrm{H}$), $7.28-7.21(\mathrm{~m}, 5 \mathrm{H}$. phenyl). $7.10(\mathrm{t}, J=3.8$ Hz .1 H , pyridime $\mathrm{C} 3-\mathrm{H}$), 4.00 (s. 2 H . pyridine- $\mathrm{CH}_{2}-\mathrm{Ar}$) 3.58 (t. $J=6.2 \mathrm{~Hz} .2 \mathrm{H} .-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{z}-$) $2.4 \mathrm{I}(\mathrm{t} . J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$. $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), $1.80-1.70$ (m. $2 \mathrm{H} . \mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), $1.61-$ $1.5+$ (mi. $2 \mathrm{H}, \mathrm{O}=\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{2}-$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,149.8,1+6.2,140.2139 .3,129.5 .129 .0 .126 .9$. $122.3,62.2 .37 .9 .36 .3,32.336 .22 .0+1397.174 .0,151.0$. $146.2,1+5.9 .140 .6,139.6 .133 .3,128.7 .126 .7 .122 .8,85.6$, 38.2. 29.6. 27.t.

Preparation of 7c and 8c. Prepared from 6c (1.05 g .3 .7 mmol) as described above: 7 c ($211 \mathrm{mg} .20 \%$) as a white solid: mp 129-131 ${ }^{\circ} \mathrm{C}$: 1 R (KBr) 3274. 2972, 1654. $1572 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.36$ (d, $J=4.0 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C} 2-\mathrm{H}$). 7.68 (d. $J=5.9 \mathrm{~Hz}$. 1 H . pyridine $\mathrm{C}+\mathrm{H}$). $7.31-7.20(\mathrm{~m} .5 \mathrm{H}$. phenyl). 7.02 (s. 1H. pyridine C3-H). 5.96 (s, $\left.1 \mathrm{H} .-\mathrm{N}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\right)+31(\mathrm{~d} . J=16.4 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{O}=\mathrm{C}-$ $\mathrm{CH}_{4}-\mathrm{O}-$), $4.13-3.91$ (m. $3 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{6}-\mathrm{O}-, \quad-\mathrm{N}-\mathrm{CH}(\mathrm{OH})-$ $\left.\mathrm{CH}_{3}-\right) .3 .76$ and $2.86\left(\mathrm{ABq} . . J=11.9 \mathrm{~Hz} .2 \mathrm{H}\right.$. pyridine- $\mathrm{CH}_{2}-$ Ar): ${ }^{1.3} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,1+6.6 .1+1.1$. 139.7. 134.1. 129.0. 128.0. 127.1. 123.7. 103.3. 80.0. 67.9. 67.4. 31.1. 8c (over-reduced product. $140 \mathrm{mg} .13 \%$ as a brown oil: $\mathrm{IR}(\mathrm{KBr}) 3385,2960.2368 .1748,1700,1584$ $\mathrm{cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.81$ (br, $1 \mathrm{H},-\mathrm{NH}$). $8.37(\mathrm{~d} . J=4.7 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C} 2-\mathrm{H}) .7 .48(\mathrm{~d} . J=7.7 \mathrm{~Hz}$. 1H. pyridine $\mathrm{C}+\mathrm{H}$). $7.31-7.22$ (m. 5 H , phenyl). 7.13 (d. $. J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}$. pyridine $\mathrm{C} 3-\mathrm{H}$). 4.20 (s. $2 \mathrm{H} .-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{O}-$). $+.10\left(\mathrm{~m} .2 \mathrm{H} .-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right) .4 .02\left(-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$ 3.97 and $3.95\left(\mathrm{ABq} . J=8.1 \mathrm{~Hz}\right.$. pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right)$.

Preparation of $7 \mathbf{d}$ and $8 d$. Prepared from $6 d$ (208 mg . 0.7 mmol) as described above: hydroxylactam 7 d (41 mg . 20%) as a colorless oil: $\mathrm{IR}(\mathrm{KBr}) 292+$ 2362, 1730, 1646. $1581 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~d} . J=+.4$ Hz . 1 H . prridine $\mathrm{C} 2-\mathrm{H}$). 7.68 (d. $. J=7.7 \mathrm{~Hz}$. 1 H . pyridine C+-H). $7.35-7.05(\mathrm{~m} .5 \mathrm{H}$, phenyl). $7.02(\mathrm{~d} . J=7.5 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C} 3-\mathrm{H}) .5 .02\left(\mathrm{t} . J=3.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\right)$. 3.97 and $3.90\left(\mathrm{ABq} . J=14.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$. pyridine- $\left.\underline{\mathrm{H}}_{2}-\mathrm{Ar}\right)$.
3.38 (s. $2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}=-$) 2.69 (dd. $J=13.7,2.7 \mathrm{~Hz}, 1 \mathrm{H} .-\mathrm{S}-$ $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{OH}$). 2.31 (dd, $J=13.7,2.8 \mathrm{~Hz} .1 \mathrm{H},-\mathrm{S}-\mathrm{CH}_{6}-\mathrm{CH}-$ $\mathrm{OH}){ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 171.0,1+6.3,140.5 .139 .3$. 133.9. 129.6. 128.7, 128.4, 123.4, 81.2. 38.1, 30.5. 29.6. 8d (over-reduced product. $62 \mathrm{mg} .30 \%$) as a brown oil; IR (KBr) 3246. 2924, 1730. 1672, $1591 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 8.29$ (d. $, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$. pyridine $\mathrm{C} 2-\mathrm{H}$). $7.51(\mathrm{~d} . J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, py ridine $\mathrm{C}+\mathrm{H}) .7 .33-7.16$ (m. 5 H . phenyl). 7.12 (d. $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$. py ridine $\mathrm{C} 3-\mathrm{H}$) , 4.03 (s. $\left.2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{S}\right) .3 .76\left(\mathrm{t} . J=5.4 \mathrm{~Hz}, 2 \mathrm{H} .-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$, 3.39 (s. 2H. prridine-Cㅐㅡ﹎-Ar). 2.78 (t, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{S}-$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$.

General procedure for the conversion of hydroxyamides (8d, 8f) to hydroxylactams (7d, 7f). A solution of over-reduced product. hydroxyamide 8d (100 mg .0 .3 mmol) in 10 mL of distilled DMSO was treated with trietlyylamine (0.276 mL .1 .98 mmol) and the mixture was stirred for 40 min at room temperature. A solution of py ridine- SO_{3} complex (158 mg .0 .99 mmol) in 10 mL of DMSO was added into the above mixture. The reaction misture was stirred for 2 h at room temperature and treated with a mixture of water and EtOAc. The organic layer was separated. dried over MgSO_{4} and concentrated under reduced pressure. The resultant residue was purified with column chromatography $(\mathrm{EtOAc} / n$-hexane $=2: 1)$ to provide $7 \mathrm{~d}(68$ $\mathrm{mg} .69 \%$) as a colorless oil.

Preparation of 7 f . The reaction of $\mathbf{6 f}$ (263 mg .0 .9 mmol) as described above afforded hydroxyamide $8 \mathbf{8 f}$ ($88 \mathrm{mg} .33 \%$) as a white solid: $m p 88^{\circ} \mathrm{C}$: $\mathrm{IR}(\mathrm{KBr}) 3348.3238 .2898$. 1660. 1586. $1518 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25$ (dd. $J=4.8 .1 .8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{py}$ ridine $\mathrm{C} 2-\mathrm{H}) .7 .57(\mathrm{dd} . ~ J=7.6$. 2.0 Hz .1 H . pyridine $\mathrm{C}+\mathrm{H}), 7.18-7.12$ (m, 2 H , thienyl C3.5H) 6.94 (dd. $J=5.1 .3 .+\mathrm{Hz} . \mathrm{lH}$. thienyl $\mathrm{C}+\mathrm{H}) .6 .81(\mathrm{~d}, . J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}$. pyridine $\mathrm{C} 3-\mathrm{H}) .4 .18$ (s. 2 H . pyridine- $\mathrm{CH}_{2}-\mathrm{Ar}$). $3.61\left(\mathrm{t} . J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{z}-\right) .2 .46(\mathrm{t} . J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $-\mathrm{CH}_{2}-\mathrm{OH}$). 1.81-1.57 (m. $4 \mathrm{H}, \mathrm{O}=\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$). Compound $8 f$ was converted into hydroxylactam 7 f as a yellow oil in 74% yield by the above Parikh oxidation reaction: IR (KBr) 3435. 2926. 2362. 1666. $1631 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (300 MHz . CDCl_{3}) $\delta 8.31$ (dd. $J=4.8 .1 .7 \mathrm{~Hz} .1 \mathrm{H}$, pyridine $(2-\mathrm{H}), 7.62$ (d. $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-\mathrm{H}) .7 .26-7.21(\mathrm{~m}, 1 \mathrm{H}$, thienyl $\mathrm{C} 3-\mathrm{H}), 7.12(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl $\mathrm{C} 5-\mathrm{H}), 6.91$ (dd, $J=5.2 .3 .4 \mathrm{~Hz}, 1 \mathrm{H}$. thienyl $\mathrm{C} 4-\mathrm{H}) .6 .73(\mathrm{~d}, J=3.0 \mathrm{~Hz}$. 1 H . py ridine $\mathrm{C} 3-\mathrm{H}) .5 .03(\mathrm{t} . J=2.5 \mathrm{~Hz}, ~ 1 \mathrm{H}, ~-\mathrm{N}-\mathrm{CH}-\mathrm{OH})$, 4.19 and $3.96\left(\mathrm{ABq} . J=16.5 \mathrm{~Hz} .2 \mathrm{H}\right.$. pyridine- $\left.\mathrm{CH}_{3}-\mathrm{Ar}\right)$. $2.54-2.36\left(\mathrm{~m} .2 \mathrm{H} . \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\right) .1 .93-1.70\left(\mathrm{~m} .2 \mathrm{H} . \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\right.$ $\mathrm{CH}_{2}-\mathrm{CH}_{2}-$). $1.42-1.33$ (m. $2 \mathrm{H}, \mathrm{O}=\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{2}-$).
General procedure for N -acyliminium ion cyclization ($9 \mathrm{a}-\mathrm{d}, 9 \mathrm{f}$). The reaction mixture of $7 \mathrm{a}(115 \mathrm{mg} .0 .43 \mathrm{mmol}$) and 1 mL of conc: $\mathrm{H}_{2} \mathrm{SO}_{4}$ was stirred for 2 h at room temperature and treated with aqueous NaHCO_{3} solution. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over MgSO_{4}. concentrated and purified with column chromatography (EtOAc / n-hexane $=5$: 1) to provide $9 \mathrm{a}(48 \mathrm{mg} .45 \%$) as a yellow solid: $\mathrm{mp} 175-$ $176{ }^{\circ} \mathrm{C}$: $\mathrm{IR}(\mathrm{KBr}) 3395.2368 .1706 .1586 \mathrm{~cm}^{-1}$: ${ }^{~} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 8.48$ (dd. $J=4.9 .1 .8 \mathrm{~Hz} .1 \mathrm{H}$. pyridine
$\mathrm{C} 2-\mathrm{H}) .7 .65$ (d. $J=9.3 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C} 4-\mathrm{H}$), 7.26-7.15 (m. 4 H, phenyl), 7.10 (t. $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$. pyridine C3-H). 5.17 (dd, $J=9.4,6.4 \mathrm{~Hz}, 1 \mathrm{H} .-\mathrm{N}-\mathrm{CH}-\mathrm{Ar}-) .4 .46$ and 3.50 ($\mathrm{ABq} . J=14.3 \mathrm{~Hz}, 2 \mathrm{H}$. py ridine- $\mathrm{CH}_{z}-\mathrm{Ar}$), 2.73-2.61 (m, 3 H . $\left.\mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}-\right) .2 .21$ (m. $\mathrm{lH}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{z}-$ CH_{10}) : ${ }^{12} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5 .148 .5$. 138.5 . 137.1, 134.7, 130.4. 128.2, 127.9, 123.7. 118.2. 111.9. 111.7. 62.3.38.1, 31.4. 31.2.

Preparation of 9b. Prepared from 7 b (29 mg .0 .10 mmol) as described above: 9 b ($16 \mathrm{mg} .60 \%$) as a white solid; mp 134-137 ${ }^{\circ} \mathrm{C}: \mathrm{MS}$ m/z: $26+\left(\mathrm{M}^{\prime}\right)$: IR (KBr) 3415. 2927, 2378. $1668.1586 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.4+(\mathrm{d} . J=$ 4.8 Hz .1 H, pyridine $\mathrm{C} 2-\mathrm{H}), 7.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C}+\mathrm{H}$). 7.18-7.08 (m, 5H. pyridine C3-H. phenyl), 5.06 (t. J $=5.1 \mathrm{~Hz} .1 \mathrm{H} .-\mathrm{N}-\mathrm{CH}-\mathrm{Ar}-) 4.52$ and $3.42(\mathrm{ABq} . J=1+3 \mathrm{~Hz}$. 2H. pyridine- $\mathrm{CH}_{2}-\mathrm{Ar}$). 2.75-2.59 (m. $2 \mathrm{H} . \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$). $2.4+2.16$ (m. $2 \mathrm{H}, \mathrm{O}=\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{-}-$), 2.03-1.85 (m. $2 \mathrm{H} .-\mathrm{N}-$ $\mathrm{CH}-\mathrm{CH}_{2}=$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0 .148 .5,148.3$. 139.0.136.8, 136.4. 136.2, 130.2. 128.4, 127.5, 127.4. 123.8. 61.2. 38.2, 33.4. 33.0, 19.3.

Preparation of 9 c . Prepared from 7 c ($39 \mathrm{mg}, 0.1+\mathrm{mmol}$) as described above: $9 \mathrm{c}(23 \mathrm{mg} .63 \%)$ as a white solid: mp 209-211 ${ }^{\circ} \mathrm{C}$: MS m/z: 266 (M'): IR (KBr) 3408, 2388. 1664. $1578 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~d} . J=4.8$ Hz . 1 H . pyridine $\mathrm{C} 2-\mathrm{H}$), 7.65 (d. $J=7.6 \mathrm{~Hz}$. 1 H . pyridine $\mathrm{C}+\mathrm{H}$). $7.26-7.16$ (m. 4 H , phenyl). 7.06 (d. $J=7.3 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C} 3-\mathrm{H}$) , 5.28 (dd. $J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H} .-\mathrm{N}-\mathrm{CH}-\mathrm{Ar}-$) +.56 and $3.45\left(\mathrm{ABq}, J=14.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$. pyridine $\left.-\mathrm{CH}_{2}-\mathrm{Ar}\right)$. $+.5+$ and $+.39\left(\mathrm{ABq} . J=17.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\right), 4.2+(\mathrm{dd}$, $\left.J=12.2,4.4 \mathrm{~Hz} .1 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{Ar})-\mathrm{CH}_{4}-\right) .3 .93$ (dd, $J=12.2$, $9.0 \mathrm{~Hz} . \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{Ar})-\mathrm{CH}_{4}-$): ${ }^{1.3} \mathrm{C}$ NMR $\left(75 \mathrm{MHz} . \mathrm{CDCl}_{3}\right)$ $\delta 167.8$. 151.0. 148.7. 137.3. 136.7. 133.4. 130.4. 129.0. 128.4, 127.9. 124.4. 71.2, 69.1. 60.6. 37.9.

Preparation of 9d. Prepared from 7d (80 mg .0 .27 mmol) as described above: 9 d ($56 \mathrm{mg} .70 \%$) as a white solid: mp $109-110^{\circ} \mathrm{C}: \mathrm{MS} m / z: 282(\mathrm{M}):{ }^{\circ} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{dd}, J=8.7 .4 .3 \mathrm{~Hz}, \mathrm{IH}$. pyridine $\mathrm{C} 2-\mathrm{H}) .8 .20(\mathrm{~d} . J=$ 7.0 Hz .1 H , pyridine $\mathrm{C}+\mathrm{H}) .7 .61(\mathrm{dd}, J=13.4 .5 .8 \mathrm{~Hz} .1 \mathrm{H}$. phenyl C3-H). $7.31-7.19(\mathrm{~m} .5 \mathrm{H}$, phenyl) $5.53(\mathrm{t} . J=6.0 \mathrm{~Hz}$. 1H. $-\mathrm{N}-\mathrm{CH}-\mathrm{Ar}-)+.61$ and $3.71(\mathrm{ABq} ., J=14.3 \mathrm{~Hz} .2 \mathrm{H}, \mathrm{O}=\mathrm{C}-$ $\mathrm{CH}_{2}-\mathrm{S}-$). 4.12 and 3.47 ($\mathrm{ABq} ., J=15.5 \mathrm{~Hz} .2 \mathrm{H}$. py ridine-$\mathrm{CH}_{2}$-Ar). 3.36 (d. $J=6.6 \mathrm{~Hz} .2 \mathrm{H} .-\mathrm{N}-\mathrm{CH}(\mathrm{Ar})-\mathrm{CH}_{2}-$).

Preparation of $9 f$. Prepared from 7 f ($9+\mathrm{mg} .0 .33 \mathrm{mmol}$) and methanesulfonic acid (0.211 mL .3 .26 mmol) as described above: $9 f$ ($27 \mathrm{mg} .31 \%$) as a white solid: mp 195$197{ }^{\circ} \mathrm{C}$: MS m/z: $270\left(\mathrm{M}^{\prime}\right)$: IR (KBr) 3405. 2926. 2857. $16+6 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{dd}, J=5.0$. 1.7 Hz .1 H. pyridine $\mathrm{C} 2-\mathrm{H}$). $7.64(\mathrm{dd} . J=7.5 .1 .5 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C} 4-\mathrm{H}), 7.26-7.20(\mathrm{~m} .1 \mathrm{H}$, pyridine $\mathrm{C} 3-\mathrm{H}) .7 .05(\mathrm{~d} . J$ $=5.3 \mathrm{~Hz} .1 \mathrm{H}$, thienyl $\mathrm{C} 5-\mathrm{H}) .6 .77(\mathrm{~d} . J=5.3 \mathrm{~Hz} . \mathrm{H}$. thienyl $\mathrm{Ct}-\mathrm{H}) .4 .91$ (s. $1 \mathrm{H},-\mathrm{N}-\mathrm{CH}-\mathrm{Ar}) .4 .36$ and 3.63 (ABq. $. J=$ 16.2 Hz .2 H . pyridine-CH2-Ar). 2.63-2.57 (m. $2 \mathrm{H}, \mathrm{O}=\mathrm{C}-$ $\left.\mathrm{CH}_{2}-\right) .2 .43-2.34\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{Ar})-\mathrm{CH}_{2}-\right) .1 .92-1.76$ (m. $2 \mathrm{H} . \mathrm{O}=\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{2}-$-).

General procedure for the preparation of pyridoazepines ($\mathbf{4 a - d}, \mathbf{4 f}$). To a solution of $9 \mathrm{a}(67 \mathrm{mg} .0 .27 \mathrm{mmol})$ in 10 mL of THF was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ solution (I M
solution in THF. 0.47 mL .0 .47 mmol) at $0^{\circ} \mathrm{C}$. and the misture was stirred for 30 min at and treated with $\mathrm{BH}_{3} \mathrm{SMe}_{2}$ (2 M solution in THF. $0.2 \mathrm{~mL} .0 .+\mathrm{mmol}$). After stirring for 3 h at room temperature, the reaction mixture was treated with 1 N HCl solution followed by an addition of mixture of water and EtOAc. The separated organic layer was dried over MgSO_{1}. concentrated and purified with column chromatograply $(\mathrm{EtOAc} / n$-hexane $=1: 5)$ to afford 4 a (37 mg. 60%) as a white solid: mp 113-115 ${ }^{\circ} \mathrm{C}$: MS m/z: 236 (M^{1}): IR (KBr) 2952, 2856. $1588.1456 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (300) $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{dd} . J=4.8 .0 .9 \mathrm{~Hz}, 1 \mathrm{H}$. pyridine $\mathrm{C} 2-$ H). $7.32-7.25$ (m .4 H, pyridine $\mathrm{C}+\mathrm{H}$, phenyl), 7.17 (d. $J=$ 7.2 Hz .1 H . phenyl) 6.40 (dd. $J=7.2,5.1 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C} 3-\mathrm{H}) .5 .60(\mathrm{t} . J=6.3 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{N}-\mathrm{CH}-\mathrm{phenyl}), 4.89$ and 3.38 (ABq. $J=14.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}$-phenyl). $3.7 \mathrm{l}(\mathrm{t}, J=6.6 \mathrm{~Hz}$. $\left.2 \mathrm{H} . \mathrm{N}-\mathrm{CH}_{-}-\right) .2 .59$ (m. 1H. N-CH-CH \underline{H}_{8}). 2.33 (m. 1H. N-$\mathrm{CH}-\mathrm{CH}_{6}-$). 2.10 ($\mathrm{ml} .2 \mathrm{H} . \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$). ${ }^{13} \mathrm{C}$ NMR (75 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 146.7 .139 .9 .138 .0 .136 .6,128.3,128.0,127.3$. 123.7. 123.7. 118.2. 111.9. 111.7.57.8. 49.6. 39.8. 30.1. 23.6.

Preparation of $\mathbf{4 b}$. Prepared from 9b ($8+\mathrm{mg} .0 .317$ monol) as described above: 4b ($6+\mathrm{mg} .80 \%$) as a white solid: $\mathrm{mp} 80^{\circ} \mathrm{C}: \mathrm{MS} m / z: 250(\mathrm{M})$; IR (KBr) 3+25, 2924. $2827.2378 .1586 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.1+$ (d. $J=5.0 \mathrm{~Hz} .1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}) .7 .28(\mathrm{~d} . J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C}+\mathrm{H}$). $7.12-6.98$ (m. m . phenyl). $6.68(\mathrm{dd}, J=7.1$, 5.1 Hz .1 H . pyridine $\mathrm{C} 3-\mathrm{H}) .4 .55$ and $3.3+(\mathrm{ABq} ., J=13.1$ Hz .2 H, py ridine-CHz-Ar$).+.12(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right) .3 .96\left(\mathrm{~d} . J=12.1 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{N}-\mathrm{CH}_{42}-\mathrm{CH}_{2}-\right), 3.13(\mathrm{t}$, $\left.J=12.1 \mathrm{~Hz} .2 \mathrm{H} .-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{Ar}\right) .2 .01-1.94$ (m. $2 \mathrm{H} .-\mathrm{N}-$ $\left.\mathrm{CH}(\mathrm{Ar})-\mathrm{CH}_{2}-\right) .1 .85-1.67$ (im. $4 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$): ${ }^{1.3} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146$.4. 146.2. 140.4. 138.0. 134.2. 132.5. 129.7. 127.9. 127.2. 116.8. 116.6. 67.8. 51.1. 38.6. 38.5. 38.3, 26.8.

Preparation of 4 c . Prepared from $9 \mathrm{c}(2+\mathrm{mg} .0 .09 \mathrm{mmol})$ as described above: $4 \mathrm{c}(10 \mathrm{mg} .44 \%)$ as a white solid: mp

97-100 ${ }^{\circ} \mathrm{C}: \mathrm{MS} m / z: 2.52\left(\mathrm{M}^{\prime}\right): \mathbb{R}$ (KBr) 3415. 2976. 2857. 2366. $159 \mathrm{l} \mathrm{cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.17$ (d. $J=$ 3.3 Hz .1 H. pyridine $\mathrm{C} 2-\mathrm{H}), 7.35(\mathrm{~d}, J=6.6 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C}+\mathrm{H}$) , $7.18-7.10(\mathrm{~m} .4 \mathrm{H}$. phenyl). $6.77(\mathrm{dd} . J=7.2$, 5.1 Hz .1 H , pyridine $\mathrm{C} 3-\mathrm{H}) .4 .54$ and $3.49(\mathrm{ABq} . J=13.7$ Hz .1 H, pyridine- $\left.\mathrm{CH}_{z}-\mathrm{Ar}\right) .4 .38(\mathrm{~d}, J=7.2 \mathrm{~Hz} .1 \mathrm{H},-\mathrm{N}-\mathrm{C}-$ phenyl), 4.05 (dt, $J=11.0,2.7 \mathrm{~Hz} .1 \mathrm{H} .-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{3}-\mathrm{O}-$). 3.89-3.80 (m. $3 \mathrm{H} .-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{\mathrm{t}}-\mathrm{O}-$): ${ }^{13} \mathrm{C}$ NMR (75 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 159.2,146.2$. 140.4. 135.0. 131.2. 129.4. 128.2, $127.6,127.0,117.8$. 116.6. 73.5, 67.6. 64.8, 49.0. 38.3 .
Preparation of 4d. Prepared from 9 d ($56 \mathrm{mg}, 0.20 \mathrm{mmol}$) as described above: $4 d$ ($16 \mathrm{mg}, 30 \%$) as a yellow solid: mp $106^{\circ} \mathrm{C}: \mathrm{MS}$ m/z: 268 (M^{\prime}); IR (KBr) 3415. 2917. 2837. 2366. 1725, $1574 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.0+$ (d. $J=4.9 \mathrm{~Hz} .1 \mathrm{H}$, pyridine C2-H). 7.39 (d. $J=7.1 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C}+\mathrm{H}$) , $7.23-7.12(\mathrm{~m}, 5 \mathrm{H}$. phenyl). $6.72(\mathrm{dd} . J=7.0$, 5.0 Hz .1 H , pyridine $\mathrm{C} 3-\mathrm{H}), 4.50(\mathrm{~d} . J=10.4 \mathrm{~Hz} .1 \mathrm{H},-\mathrm{N}-$ CH- Ar). 4.37 (m. $1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{4}$), 4.35 and $3.53(\mathrm{ABq}, J=13.2$ Hz .2 H. py ridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right), 3.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{4}\right), 2.90(\mathrm{~m}$. 1H. S-CH $\left.{ }_{4}-\mathrm{CH}-\mathrm{Ph}\right) .2 .62$ (m. 1H. S-CH $\left.{ }_{6}-\mathrm{CH}-\mathrm{Ph}\right) .2 .4+(\mathrm{m}$. $\left.2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$) ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5,140.4$. 139.2, 136.7. 136.6. 132.5, 129.5. 129.4, 129.2. 128.7, 128.3. $116.4,68.5,5+3,38.4 .35 .0,27.9$.

Preparation of $\mathbf{4 f}$. Prepared from $9 f(30 \mathrm{mg} .0 .11 \mathrm{mmol})$ as described above: $\mathbf{4 f}(5 \mathrm{mg} .21 \%$) as a yellow solid: mp 108-111 ${ }^{\circ} \mathrm{C}: \mathrm{MS}$ m/z: 256 (M'): IR (KBr) 3+20, 2930, 2840. 1578. $1432 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.21$ (d. $. J=$ 4.9 Hz .1 H. pyridine $\mathrm{C} 2-\mathrm{H}), 7.29(\mathrm{~d}, J=7.1 \mathrm{~Hz} .1 \mathrm{H}$. pyridine $\mathrm{C}+-\mathrm{H}) .6 .89(\mathrm{~d} . J=5.1 \mathrm{~Hz} .1 \mathrm{H}$, thienyl $\mathrm{C} 2-\mathrm{H}) .6 .75$ (dd, $. J=7.1 .5 .0 \mathrm{~Hz}, 1 \mathrm{H}$. py ridine $\mathrm{C} 3-\mathrm{H}$). $6.66(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, 1H. thienyl C3-H). 4.47 and $3.40(\mathrm{ABq} . J=14.5 \mathrm{~Hz}, 2 \mathrm{H}$. pyridine- CH_{2}-Ar). 4.05 (d, $\left.J=11.5 \mathrm{~Hz} .1 \mathrm{H} .-\mathrm{N}-\mathrm{CH}-\mathrm{Ar}\right)$. 3.70 (m. 1H. $-\mathrm{N}-\mathrm{CH}_{4}-\mathrm{CH}_{2}-$). 3.20 (m. $\mathrm{IH} .-\mathrm{N}-\mathrm{CH}_{6}-\mathrm{CH}_{2}-$). $1.95-1.59$ (m, $\left.6 \mathrm{H},-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right):{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1+6.5 .1+6.3,138.7 .13+0.133 .6 .128 .8$.

Scheme 1. "Reagents: i) sutcinic anhydride ($n=0$), glutaric anhydride ($n=1$), diglycolic auhydride ($n=1, X=O$). Uhiodiglycolic acid ($n=1$, $\mathrm{X}=\mathrm{S}$), $A \mathrm{cCl}$, wylenle, reflux: ii) DIBAI, H , THF, $-78^{\circ} \mathrm{C}$: iii) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ ($7 \mathrm{a}-\mathrm{d}$) or $\mathrm{CH}_{3} \mathrm{SO} \mathrm{O}_{3} \mathrm{H}$ ($7 \mathrm{e}-\mathrm{f}, 7 \mathrm{~h}$), rt: iv) BF_{3} OFt, and $\mathrm{BH}_{3} \mathrm{SMe}_{2}$, THF, tt.

$121.2,117.6,117.4,64.1,51.7,37.5,31.5,26.5,25.7$.

Results and Discussion

As shown in Scheme 1 , our basie strategy utilizes the N acyliminium ion cyclization of hydroxylactam 7a-h with aromatic ring as π-nucleophile under the acidic condition. ${ }^{6}$ As a lirst step, 2-amino-3-phenylmethylpyridines (5a) and 2-amino-3-thienylmethylpyridine ($\mathbf{5 b}$), which were prepared by known procedure, ${ }^{7}$ were condensed with various anhydrides or dicarboxylic acids to allord the cyelic imides 6a-h in moderate to good yields ($38-75 \%$). The results of all reactions were summarized in Table I.

In case of the reduction of cyelic imides to hydroxylactams with NaBH_{4}, the hydroxyamides 8 , over-reduced compounds, were obtained predominantly instead of the desired hydroxylactams consistent with our previous results. ${ }^{5}$ Other reducing agents such as Red- Al and bis(2,6-dimethoxyphenoxy)borane (BDMPB) also gave the side-products. ${ }^{8}$ On the other hand, the reduction of cyelic imides $\mathbf{6 a - h}$ with

Table 1. Structures and yields of cach reaction in Scheme 1

Entry	Ar	n	X	$\begin{gathered} \text { Yield of } 6 \\ (\%)^{\prime \prime} \end{gathered}$	$\begin{gathered} \text { Yield of } 9 \\ (\%)^{2} \end{gathered}$	Yield or 4 (\%) ${ }^{2}$
a	Pheny	0	ClH_{2}	75	45	60
b	Pheny]	1	ClH_{2}	38	60	80
c	Pheny]	1	0	41	63	44
d	Pheny]	1	S	47	70	30
e	2-Thieny!	0	ClH_{2}	63	decom.'	-
f	2-Thieny!	1	CH_{2}	70	31^{16}	31
g	2-Thieny!	1	O	52	-	-
h	2-Thieny!	1	S	60	decom."	-

${ }^{4}$ lsolated yield. " $\mathrm{Cl}_{3} \mathrm{SO}_{3} \mathrm{EI}$ was used for cyclization instead of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Table 2. Reduction of cyclic imides ($6 a-h$) and Parith oxidation of the corresponding over-reduced compounds ($\mathbf{8 d} . \mathbf{8 f}$. and $\mathbf{8 h}$) to hydroxylactams (7a. 7f. and 7h)

'lsolated yield. '" solated ratio of 7 and 8 . 'Combined yield (reduction and oxidation). "Not tried.

DIBAL-Il provided hydroxylactams 7 along with hydroxyamides (8) in various ratios depending on the substrates. 2Thienyl derivatives 6f-h were, however, transformed to hydroxyamides $\mathbf{8 f}-\mathrm{h}$. Fortunately, these over-reduced compounds 8d, 8 f and 8 h could be cleanly converted into the desired hydroxylactams in acceptable yield by Parikh oxidation (Pyr.-SOs complex). ${ }^{\text {. The results of these reactions }}$ were summarized in Table 2.

The hydroxylactams 7a-f and 7h were subjected to the acidic condition of N -acyliminium ion cyclization 10 obtain tetracyclic ring system. The hydroxylactams 7a-d, which have a phenyl ring as a π-nucleophile were cyclized smoothly on treatment of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to alford the cyclized products in $45-70 \%$ yields. However, the cyclization of hydroxylactams 7 e and 7 h , which have a thienyl ring as a π nucleophile, did not take place on the various N-acyliminium ion cyclization conditions. The hydroxylactam 7 f was only cyelized successfully on treatment of $\mathrm{Cl}_{3} \mathrm{SO}_{3}$ II as an activator to aflord the eyclized product 9 f in 31% yield. ${ }^{10}$ This may due to the instability of thienyl ring on the vigorous acidie cyelization conditions. Finally, the reduction of lactam carbonyl group in $9 \mathbf{9}-\mathbf{d}$ and 9 f with $\mathrm{Bl}_{3} \cdot \mathrm{SMc}_{2}$ in the presence of BF_{5}. $\mathrm{OE1}_{2}$ provided tetracyclic pyrido $[2,3-b$ azepines 4a-d, and $4 f$ in $31-80 \%$ yiclds, respectively.

For the evaluation of biological effect of synthetic compounds as well as our previously reported compounds, ${ }^{5}$ the binding assay for σ_{2}-adrenoceptor was performed according to the previously reporied method and summarized in Table

Table 3. The binding altinity of synthetic compounds for α_{2} adrenoceptor
No. Structure $k i(\mu \mathrm{M})^{\prime}$,
"Affinties of compounds were determined using competition binding assay in the presence of 1 nW of $\left[^{3} \mathrm{H}\right.$ |rauwolscine. ${ }^{\text {h }}$ Compounds trom the previous results ${ }^{\text {ret. }}$. Virtacapine (2) was prepared by the known procedure. ${ }^{\text {cill }}$ d
3. ${ }^{11}$ The binding affinity data of mirtazapine (2) was also inserted for activity comparison. In general, tetracyclic azepins 3a. 3c. and ta. which have a five-membered pyrrolidine ning showed better binding affinities than other tetracyclic azepines having a six-membered piperidine. morpholine or thiomorpholine ring. Among tested compounds. 2.3.9.13b-tetralydro$1 H$-benzolf]pyrtolo [2,1-a]pyrido[2,3-cjazepine (4a) was the most potent $(\mathrm{Ki}=0.26 \mu \mathrm{M})$ but showed about 3 -fold less binding affinity than mirtazapine (2) $(\mathrm{Ki}=0.08 \mu \mathrm{M})$ for $\alpha_{2}-$ adrenoceptor. On the other hand, tetracyclic azepines having a six-membered ring showed no noticeable binding affinities except compound $\mathbf{H f}^{(}(\mathrm{Ki}=2.73 \mu \mathrm{M})$.
ln conclusion. tetracyclic pyrido[2.3-h]azepine derivatives (4a-d and 4f) were successfully sy nthesized as analogues of mirtazapine through A-acyliminum ion cyclization strategy starting from 2-amino-3-ary lmethylpyrines $\mathbf{5 a}$ and $\mathbf{5 b}$. The key intermediates, hydroxylactams 7. were prepared by reduction of the corresponding imides with only DIBAL-H followed by Parikh oxidation of the resulting over-reduced compounds 8 . The α_{2}-adrenoceptor binding affinity data of synthetic compounds showed that 4 -methyl group of piperazine moiety of mirtazapine plays an important role for the binding affinity for α_{2}-adrenoceptor.

Acknowledgment. This work was supported by grants from The Ministry of Health and Welfare (2M10950).

References

1. (a) Roeder. T.: Degen. J.: Gewecke. M. Ewr. J. Pharmacol. 1998. 349. 171-177. (b) Briel. D. Iharmazie 1990. 45. 895-899.
2. (a) De Boer. T.: Nethens. F.: Van Helwoirt. A. Eur J. Phamacol. 1994. 253. R5-R6. (b) De Boer. T': Nelkens. F.: Van Helvoirt. A.: Van Delft. A. M. L.J. Thamacol. Exp. Threr. 1996. 277. 852-860. (c) I Iaddjeri. N.: Blier. P.; De Montignv: C. J. Pharmacol. Exp. Ther 1996, 277, 861-871.
3. (a) Nickolson, V. J.: Wieringa. J. H. J. Phamm. Pharmacol 1981, 33. 760-766. (b) Wook. M. D.: Thomas. D. R. Wathins. C. J.: Newberry. N. R. J. Hharm. Hharmacol. 1993. 45. 711-714. (c) Pinder. R. M.: Van Dell. A. M. L. Br. J. (Cim. Ihamhacol. 1983. 15, 269S-276S.
4. (a) Berger, J. G.: Chang, W. K.: Clader, J. W.: Hou. D.: Chipken, R. Г.: McPhail, A. T. J. Med (hem. 1989, 32. 1913-1921. (b) Draper. R. W.: Hou. D.: Iyer. R.: Lee. G. M.: Liang. J. I.: Mas. J. L.: Tomos. W.: Vater. E. J.: Gunter. F.: Mergelsberg. I.: Scherer. D. Org. Process Res. Dew 1998. 2. 175-185. (c) Reinhard. R.: Glaser, M.: Neumann, R.: Maas, G. J. Org. (hem. 1997. 62, 774+7751 . (d) MeKenta. M. T.: Proctor, G. R.: Young. I. C.: Harver, A. I..J. Med (hem. 1997, fo, 3516-3523. (c) Ice, Y. S.: Min. B. J.: Park. Y. K.: Lee. I, Y.: Lee. S. J.: Park. H. Tetrahedron Lett. 1999. 40.5569-5572.
5. Lee. J. Y.: Baek. N. J.: Lee. S. J.: Park. H.: Lee. Y. S. Heterocyches 2001, 55. 1519-1526.
6. (a) Kim, J. I.: I.ce. Y. S.: Park. H.: Kim, C. S. Tetrahedrom 1998. 54, 7395-7400. (b) Tanis, S. P.: Deaton, M. V.: Dixon, I.. A.: McMills. M. C.: Raggon. J. W.: Collins. M. A. J. Org. Chem. 1998. 63. 6914-6928.
7. Kametani. S.: Surgenor. A.: Fuhumoto. K. J. Chem. Soc. Ierkin Trons. / 1981. 920-925
8. (a) Kang. I.: I.ce, J. W.: Kim, J. I.: Pyun. C. Tetrathedron Heft. 1995, 36. $4265-4268$ (b) Kang. J.: I.ce, C. W.: Lim. G. J.: Cho. B. 1. Tetrahedron: Asvmmetrv 1999. 10.657-660.
9. Pariki. J. R.: Doering. W. E. J. Am. Chem. Soc. 1967. 89. 55055507.
10. Dijkink, I.: Speckamp, W. N. Tetrahedron 1978, 3f, 17.3-178.
11. Chung. S.-II.: Yook. J.: Min, B. J.: I.ee, J. Y.: I.ee, Y. S.: Jin, C. IIrch Pharm. Res. 2000, 23, 353-359.
