DOI QR코드

DOI QR Code

Sol-Gel Template Synthesis and Characterization of PT, PZ and PZT Nanotubes

PT, PZ와 PZT나노튜브의 졸-겔 형판합성과 특성

  • Jang, Gi Seok (Department of Chemistry, Korea Air Force Academy) ;
  • Bernadette A. Hernandez (Department of Chemistry, Colorado State University) ;
  • Ellen R. Fisher (Department of Chemistry, Colorado State University) ;
  • Peter K. Dorhout (Department of Chemistry, Colorado State University)
  • Published : 2002.06.20

Abstract

We report the synthesis and characterization of the perovskite nanotubes made by sol-gel template syn-thesis.Both lead titanate (PbTiO3 : PT), lead zirconate (PbZrO3 : PZ) and lead zirconium titanate (PbZrO3 -PbTiO3 : PZT) solid solution nanotubes were prepared with a chelate sol-gel of titanium isopropoxide (Ti(OPri)4 ), zirconium tet-rabutoxide (Zr(OBu)4 ) and the respective lead acetate (Pb(OAc)2 -3H2O). WhatmanRanodisc membranes, with a 200nm pore size, served as the template. After the removal of the template in the 6M-NaOH, scanning electron microscopy shows that the shapes formed are 200 nm outer diameter tubes with 50mm lengths. Transmission electron microscopy and electron diffraction reveal that the tubes are polycrystalline. The PT nanotubes so far have shown an anomalous transition temperature, 234.4$^{\circ}C$ as measured by DSC with a small particle size, 15.4 nm determined by X-ray analysis with the aid of Scherrer's equation.

졸-겔 형판 합성법을 이용하여 페로브스카이트 구조를 갖는 나노튜브를 합성하고 그 특성을 조사하였다. PbTiO3(PT), PbZrO3(PZ)와 PbZrO3-PbTiO3(PZT)고용체 나노튜부는 반응물, Ti(OPri)4, Zr(OBu)3와 Pb(OAc)2-3H2O 들의 킬레이트 졸-겔 합성법에 의해서 합성하였다. 산화 알루미늄 형판은 200nm의 직경을 갖는 훠트만 아노디스크가 사용되었다. 6.0M-NaOH 용액에서 형판을 제거한 다음, 주사현미경 분석에 의해서 50m 길이와 200nm 외곽 직경의 생성물 나노튜브를 확인할 수 있었다. 투과현미경 분석과 전자회절 분석에 의하여 나노튜브가 다결정임을 확인하였다. DSC 분석에 의하여 PT 나노튜브의 상전이 온도는 특이하게도 234.4$^{\circ}C$ 임이 확인되었으며, 이때의 입자크기는 X-선 분석의 하나인 Scherrer 식에 의해서 15.4nm 임이 계산되었다.

Keywords

References

  1. Mitsui, T.; Tatsuzakai, I.; Nakamura, E., Eds. An Introductionto the Physics of Ferroelectrics; Gordon andBreach Science Publishers: New York, 1976.
  2. Akdogan, E. K.; Leonard, M. R.; Safari, A. Size Effectsin Ferroelectric ceramics; Nawala, H. S., Eds.; Handbookof Low and High Dielectric Constant Materials,Vol.; Academic Press: San Diego, 1999; 61.
  3. Jona, F.; Shirane, G. Ferroelectric Crystals; MacMillan:New York, 1962.
  4. Sharma, H. B.; Mansingh, A. J. Mater. Sci. 1998, 33,4455. https://doi.org/10.1023/A:1004576315328
  5. Hernandez, B. A.; Chang, K. S; Fisher, E. R; Dorhout,P. K. Chem. Mater. 2002, 14, 480. https://doi.org/10.1021/cm010998c
  6. Cullity, B. D. Elements of X-Ray Diffraction; Addison-Wesly: Massachuesetts, 1978.
  7. Asiaie, R.; Zhu, W.; Akbar, S. A.; Dutta, P. K. Chem.Mater. 1996, 8, 226. https://doi.org/10.1021/cm950327c
  8. Golego, N.; Studenikin, S. A.; Cocivera, M. Chem.Mater. 1998, 10, 2000. https://doi.org/10.1021/cm980153+
  9. Yukawa, K.; Wakino, K. Interg. Ferroelect. 1998, 20,107. https://doi.org/10.1080/10584589808238774
  10. Ma, Y.; Vileno, E.; Suib, S.; Dutta, P. K. Chem. Mater.1997, 9, 3023. https://doi.org/10.1021/cm970371n
  11. Lubrosky, F. E. J. Appl. Phys. 1961, 32, 171S. https://doi.org/10.1063/1.2000392
  12. Weissmuller, J. In Nanomaterials: Synthesis, Properties and Applications; Cammarata, A. S. E. a. R. C., Ed.; Institute of Physics Publishing: London, 1996; p 266.
  13. Ishikawa, K.; Yoshikawa, K.; Okada, K. Phys. Rev. B,1988, 37(10), 5852. https://doi.org/10.1103/PhysRevB.37.5852
  14. Zhang, W. L.; Jiang, B.; Zhang, P. L.; Ma, J. M.;Cheng, H. M.; Yang, Z. H.; Li, Z. H. J. Phys.: Condens.Matter, 1993, 5, 2619. https://doi.org/10.1088/0953-8984/5/16/018
  15. Fately, W. G.; Dollish, F. R.; McDevitt, N. T.; Bently,F. F. Infared and Raman Selection Rules For Molecularand Lattice Vibrations; Wiley-Interscience: New York,1972.
  16. Fu, D.; Suzuk, H.; Ishikawa, K. Phys. Rev. B, 2000,62(5), 3125. https://doi.org/10.1103/PhysRevB.62.3125
  17. Blum, J. B. Mat. Lett., 1985, 3(9-10), 360. https://doi.org/10.1016/0167-577X(85)90076-X
  18. Zhow, Q. F.; Zhang, J. X; Chan, H. L. W.; Choy, C. L.Ferroelectrics, 1997, 195, 211. https://doi.org/10.1080/00150199708260523
  19. Frey, M. H.; Han, Z. X. P.; Payne, D. A. Ferroelectrics 1998, 206, 207, 337.
  20. Kamalasanan, M. N.; Kumar, N. D.; Chandra, S. J.Appl. Phys. 1993, 74, 5679. https://doi.org/10.1063/1.354183
  21. Goldstein A. N.; Echer, C. M.; Alivisatos, A. P. Science1992, 256, 1425. https://doi.org/10.1126/science.256.5062.1425

Cited by

  1. Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate vol.83, pp.3, 2003, https://doi.org/10.1063/1.1592013
  2. Second harmonic generation of template synthesized PbTiO3 nanostructures vol.30, pp.1, 2007, https://doi.org/10.1016/j.optmat.2006.11.051
  3. In situ preparation of CoFe2O4–Pb(ZrTi)O3 multiferroic composites by gel-combustion technique vol.29, pp.13, 2009, https://doi.org/10.1016/j.jeurceramsoc.2009.03.031
  4. Large-area Synthesis of Single-crystal PbTiO3Nanobelts and Nanoflakes vol.42, pp.4, 2013, https://doi.org/10.1246/cl.121148
  5. Perovskite ferroelectric nanomaterials vol.5, pp.19, 2013, https://doi.org/10.1039/c3nr02543h
  6. Ferroelectric Lead Zirconate Titanate and Barium Titanate Nanoshell Tubes vol.782, 2003, https://doi.org/10.1557/PROC-782-A9.4
  7. Lead titanate nano- and microtubes vol.21, pp.03, 2006, https://doi.org/10.1557/jmr.2006.0078
  8. 3D Nanotube Capacitor 구현을 위한 BLT Nanotube 제작 vol.43, pp.4, 2006, https://doi.org/10.4191/kcers.2006.43.4.220