DOI QR코드

DOI QR Code

Energy Transfer between Calixarene and Naphthalene


초록

The photoluminescence of calixarene crystals has been studied as functions of temperature, time, and concentration. The vibronic bands shift to longer wavelength and become significantly sharper as temperature decreases. The experimental results r eveal that the structural transformation occur during the annealing process. Time-resolved spectra of calixarene at 12 K are monitored. Spectral features, which demonstrate characteristic of energy transfer processes, are not observed. The depopulation of excited state density is mainly controlled by unimolecular decay process dominating other decay processes. The lifetime was found to be 2.6 $\pm$ 0.1 ns. For the case of calixarene mixed with naphthalene, the fluorescence spectrum shows that the band centered at 340 nm lies 2840 $cm^{-1}$ below the relatively broad 310 nm band found for calixarene crystals. The spectra also exhibit that the emission intensity increases with increasing calixarene concentration. The results are evident that the calixarene emission is quenched by the naphthalene. Phosphorescence of calixarene mixed with naphthalene crystals is observed to determine whether the emission is due to naphthalene. The phosphorescence peaks were compared with the ground-state vibrational frequencies of naphthalene and found to be in good agreement. The results indicate that inter-molecular energy transfer occurs between calixarene and naphthalene.

키워드

참고문헌

  1. Gutsche, C. D. Acc. Chem. Res. 1983, 16, 161. https://doi.org/10.1021/ar00089a003
  2. Calixarenes; Stoddart, J. F., Ed.; Royal Society of Chemistry: Cambridge, 1989.
  3. Arimura, T.; Kawabata, H.; Matsuda, T.; Muramatsu, T.; Satoh,H.; Fugio, K.; Manabe, P.; Shinkai, S. J. Org. Chem. 1991, 56,301. https://doi.org/10.1021/jo00001a057
  4. Takeshita, M.; Shinkai, S. Bull. Chem. Soc. Jpn. 1995, 68(4),1088. https://doi.org/10.1246/bcsj.68.1088
  5. Atwood, J. L.; Sreed, J. W. Metal-atom Appended Calixarenesand Related Host Compounds; 8th International Symposium onMolecular Recognition and Inclusion: Ottawa, Ontario, Canada,1994.
  6. Atwood, J. W.; Koptsantonis, G. A.; Raston, C. L. Nature 1994,368, 229. https://doi.org/10.1038/368229a0
  7. Xu, W.; Vital, J.; Puddephatt, R. J. J. Am. Chem. Soc. 1995, 117,8362. https://doi.org/10.1021/ja00137a009
  8. Araki, K.; Yanagi, A.; Shinkai, S. Tetahedron 1993, 49(31), 6763. https://doi.org/10.1016/S0040-4020(01)80420-8
  9. Gatsch, C. D.; Alam, I. Tetrahedron 1988, 44, 4689. https://doi.org/10.1016/S0040-4020(01)86171-8
  10. Calestani, G.; Ugozzoli, F.; Ghidini, E.; Ungaro, R. J. Chem. Soc.Chem. Comm. 1987, 344.
  11. Yamamoto, H.; Shinkai, S. Chem. Lett. 1994, 1115.
  12. Gutsche, C. D.; Levine, J. A.; No, K. H.; Bauer, L. Tetrahedron1983, 39, 409. https://doi.org/10.1016/S0040-4020(01)88541-0
  13. Park, Y. J.; Shin, J. M.; Nam, K. C.; Kim, J. M.; Kook, S. K. Bull.Korean Chem. Soc. 1996, 17, 643. https://doi.org/10.1007/BF02699111
  14. Gutsche, C. D. Calixarenes; Royal Society of Chemistry:Cambridge, 1989.
  15. Zhang, L.; Coffer, J. L.; Wang, J.; Gutsche, C. D. J. Am. Chem.Soc. 1990, 118, 12840. https://doi.org/10.1021/ja962964p
  16. Zhang, Y.; Agbaria, R. A.; Mukundan, N.; Warner, I. J. InclusionPhenom. and Mol. Recogn. in Chemistry 1996, 24, 353. https://doi.org/10.1007/BF01041119
  17. Gravett, D. M.; Guillet, J. E. Macrmolecules 1996, 29, 617. https://doi.org/10.1021/ma950870e
  18. Grady, T.; Harris, S. J.; Smyth, M. R.; Diamond, D. Anal. Chem.1996, 68, 3775. https://doi.org/10.1021/ac960383c
  19. Nabok, A. V.; Richardson, T.; Davies, F.; Stirling, J. M. Langmuir1997, 13, 3198. https://doi.org/10.1021/la962115f
  20. Dunach, M.; Seigneuret, M.; Rigaud, J. L.; Padros, E.Biochemistry 1987, 26, 1179. https://doi.org/10.1021/bi00378a028
  21. Chang, C. H.; Chen, J. G.; Govindjee, R.; Ebrey, T. Proc. Natl.Acad. Sci. U.S.A. 1985, 82, 396. https://doi.org/10.1073/pnas.82.2.396
  22. Chang, C. H.; Jonas, R.; Melchiore, S.; Govindjee, R.; Ebrey, T.G. Biophys. J. 1986, 49, 731. https://doi.org/10.1016/S0006-3495(86)83699-2
  23. Szundi, I.; Stoeckenius, W. Proc. Natl. Acad. Sci. U.S.A. 1987, 84,3681. https://doi.org/10.1073/pnas.84.11.3681
  24. Szundi, I.; Stoeckenius, W. Biophys. J. 1988, 54, 227. https://doi.org/10.1016/S0006-3495(88)82951-5
  25. Szundi, I.; Stoeckenius, W. Biophys. J. 1989, 56, 369. https://doi.org/10.1016/S0006-3495(89)82683-9
  26. Ariki, M.; Lanyi, J. K. J. Biol. Chem. 1986, 261, 8167.
  27. Jonas, R.; Koumlos, Y.; Ebrey, T. G. Photochem. Photobiol. 1990,52, 1163. https://doi.org/10.1111/j.1751-1097.1990.tb08455.x
  28. Jonas, R.; Ebrey, T. G. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 149. https://doi.org/10.1073/pnas.88.1.149
  29. Hanson, D. M. J. Chem. 1969, 51, 11.
  30. Personov, R. I. In Spectroscopy and Excitation Dynamics ofCondensed Molecular Systems; Agranovich, V. M.; Hochstrasser,R. M., Eds.; North-Holland: Amsterdam, 1983.
  31. Funfschilling, J.; Zschocke-Granacher, J. Chem. Phys. Lett. 1984,110, 315. https://doi.org/10.1016/0009-2614(84)85236-7
  32. Jankowiak, R.; Bassler, H. Chem. Phys. 1984, 89, 81. https://doi.org/10.1016/0301-0104(84)85299-4
  33. Araki, K.; Iwamoto, K.; Shinkai, S.; Matsuda, T. Chem. Lett.1989, 1747.
  34. Iwamoto, K.; Araki, K.; Shinkai, S. J. Org. Chem. 1991, 56, 4955. https://doi.org/10.1021/jo00016a027

피인용 문헌

  1. Receptors for organochlorine pesticides based on calixarenes vol.163, pp.3-4, 2008, https://doi.org/10.1007/s00604-008-0019-0