DOI QR코드

DOI QR Code

화학발광법을 이용한 Cr(Ⅲ)이온의 정량

Determination of Cr(Ⅲ) Iron by Chemiluminescence Method

  • 이상학 (경북대학교 자연과학대학 화학과) ;
  • 주익수 (경북대학교 자연과학대학 화학과)
  • Lee, Sang Hak (Department of Chemistry, Kyungpook University) ;
  • Ju, Ik Su (Department of Chemistry, Kyungpook University)
  • 발행 : 2002.04.20

초록

자동흐름분석법으로 lucigenin을 발광시약으로 이용하여 화학발광의 세기를 측정함으로써 수용액 중의 Cr(III)을 정량하는 방법에 대하여 연구하였다. pH, 시료의 주입 양과 속도, lucigenin의 농도 및 방출파장이 방출세기에 미치는 영향을 조사하였다. Lucigenin과 과산화수소의 화학발광 반응에서 Cr(III)를 첨가하였을 때 방출세기가 현저히 증가함을 관찰하였다. Cr(III) 이온 검정곡선의 직선감응범위와 검출한계는 들뜸 파장, pH 및 lucigenin과 과산화수소의 농도가 각각 473 nm, 12.8 및 1.0${\times}10^{-6}$M과 2.0M였을 때, 1.0${\times}10^{-6}$M∼1.0${\times}10^{-3}$M 및 5.2${\times}10^{-8}$M이었다.

A Method to determine Cr(III)ion in aqueous solution by chemiluminescence method using a stopped flow system has been studied. The method is based on the increased chemiluminescence intensity with the addition of Cr(III) to a solution of lucigenin a nd hyrogen peroxide. The effects of pH, injection volumes of reagent and sample, and concentration of lucigenin and hyrogen peroxide on the chemiluminescence intensity have been investigated. The calibration curve for Cr(III) ion was linear over the range from 1.0${\times}$$10^{-6}$ to 1.0${\times}$$10^{-3}$M and the detection limit was 5.2${\times}$$10^{-8}$M under the optimal experimental condition of 437nm, 12.8,and 1.0${\times}$$10^{-6}$ and 2.0M for emission wavelength, pH, and concentration of lucigenin and hyrogen peroxide, respectively.

키워드

참고문헌

  1. Stollenwerk, K. G.; Grove D. B. J. Environ. Qual. 1985, 14, 396. https://doi.org/10.2134/jeq1985.143396x
  2. Langard, S.; Norseth T.; In Handbook on the Toxicology of Metals; Friberg, L., Ed.; Elsevier: Amsterdam, 1979; p 383.
  3. Ottaway, J. M.; Fell, G. S. Pure Appl. Chem. 1986, 58, 1707. https://doi.org/10.1351/pac198658121707
  4. Nriagu, J. O.; Nieboer, E. Chromium in the Natural and Human Environment; Wiley: New York, 1988.
  5. Standard Methods for the Examination of Water and Wastewater; Clesceri, L. S.; Greengerg, A. E.; Eaton, A. D., Ed.; American Public Health Association: Washington, DC, U.S.A., 1998.
  6. Sperling, M.; Xu, S.; Welz, B. Anal. Chem. 1992, 64,3101. https://doi.org/10.1021/ac00048a007
  7. Subramanian, K. S. Anal. Chem. 1988, 60, 11. https://doi.org/10.1021/ac00152a004
  8. Posta, J.; Berndt, H.; Luo, S. K.; Schaldach, G. Anal. Chem. 1993, 65, 2590. https://doi.org/10.1021/ac00067a008
  9. Aliminti, P. A.; Petrucci, F.; Caroli, S. Anal. Chim. Acta 1996, 325, 185.
  10. Wei, R.; Haraguchi, H. Anal. Sci. 1999, 15, 729. https://doi.org/10.2116/analsci.15.729
  11. Lan, C. R.; Tseng, C. L.; Yang, M. H. Analyst 1991, 116, 35. https://doi.org/10.1039/an9911600035
  12. Alimonti, A.; Petrucci, F.; Santucci, B.; Cristaudo, A.; Caroli, S. Anal. Chim. Acta 1995, 306, 35. https://doi.org/10.1016/0003-2670(94)00620-2
  13. Donais, M. K.; Rettberg, T. Talanta 1999, 49, 1045. https://doi.org/10.1016/S0039-9140(99)00136-8
  14. May, T. W.; Wiedmeyer, R. W. Atomic Spectroscopy 1998, 19, 150.
  15. Weber, A. J.; Grayeski, M. L. Anal. Chem. 1987, 59, 1452. https://doi.org/10.1021/ac00137a017
  16. Robarrds, K.; Worsfold, P. J. Anal. Chim. Acta 1992, 266, 173.
  17. Sherman, P. A.; Holzbecher, J.; Ryan, D. E. Anal. Chim. Acta 1978, 21, 97.
  18. Kricka, L. J.; Thorpe, G. H. G. Analyst 1983, 108, 1274. https://doi.org/10.1039/an9830801274
  19. Hasebe, T.; Nagao, J.; Kawashima, T. Anal. Sci. 1997, 13, 93.
  20. Fujiwara, T.; Oramoto, Y.; Kumamaru, T. Anal. Sci. 1998, 14, 203. https://doi.org/10.2116/analsci.14.203
  21. Montano, L. A.; Ingle, J. D., Jr. Anal. Chem. 1979, 51, 919. https://doi.org/10.1021/ac50043a032