DOI QR코드

DOI QR Code

Zirconium Titanate Thin FIlm Prepared by Surface Sol-Gel Process and Effects of Thickness on Dielectric Property


Abstract

Single phase of multicomponent oxide ZrTiO4 film could be prepared through surface sol-gel route simply by coating the mixture of 100 mM zirconium butoxide and titanium butoxide on $Pt/Ti/SiO_2Si(100)$ substrate, following pyro lysis at $450^{\circ}C$, and annealing it at 770 $^{\circ}C.$ The dielectric constant of the film was reduced as the film thickness decreased due to of the interfacial effects caused by layer/electrode and a few voids inside the multilayer. However, the dielectric property was independent of applied dc bias sweeps voltage (-2 to +2 V).The dielectric constant of bulk film, 31.9, estimated using series-connected capacitor model was independent of film thickness and frequency in the measurement range, but theoretical interfacial thickness, ti, was dependent on the frequency. It reached a saturated ti value, $6.9{\AA}$, at high frequency by extraction of some capacitance component formed at low frequency range. The dielectric constant of bulk ZrTiO4 pellet-shaped material was 33.7 and very stable with frequency promising as good applicable devices.

Keywords

References

  1. Wolfram, G.; Globel, E. Mater. Res. Bull. 1981, 16, 1455. https://doi.org/10.1016/0025-5408(81)90066-0
  2. Wakino, K.; Minai, K.; Tamura, H. J. Am. Ceram. Soc. 1984, 67,278. https://doi.org/10.1111/j.1151-2916.1984.tb18847.x
  3. Heiao, Y.-C.; Wu, L.; Wei, C.-C. Mater. Res. Bull. 1988, 23, 1687. https://doi.org/10.1016/0025-5408(88)90176-6
  4. Bhattacharya, A. K.; Hartridge, A.; Mallick, K. K.; Tayler, D. J.Mat. Sci. 1996, 31, 5583. https://doi.org/10.1007/BF01160801
  5. Elissalde, C.; Cross, E.; Randall, C. A. J. Am. Ceram. Soc. 1996,79, 2041. https://doi.org/10.1111/j.1151-2916.1996.tb08935.x
  6. Bianco, A.; Gusmano, G.; Freer, R.; Smith, P. J. Eur. Ceram. Soc.1999, 19, 959. https://doi.org/10.1016/S0955-2219(98)00353-7
  7. Ramakrishnan, E. S.; Cornett, K. D.; Shapiro, G. H.; Howng, W.-Y. J Electrochem. Soc. 1998, 145, 358. https://doi.org/10.1149/1.1838260
  8. Li, H.-C.; Si, W.; West, A. D.; Xi, X. X. Appl. Phys. Let. 1998, 73,464. https://doi.org/10.1063/1.121901
  9. Ro, Y.-A.; Kim, S.-J.; Lee, Y.-K.; Kim, C. H. Bull. Korean Chem.Soc. 2001, 22, 1231.
  10. Fang, M.; Kim, C. H.; Martin, B. R.; Mallouk, T. E. J. Nanopar.Res. 1999, 1, 43. https://doi.org/10.1023/A:1010061612772
  11. Natori, K.; Otani, D.; Sano, N. Appl. Phys. Let. 1998, 73, 632. https://doi.org/10.1063/1.121930
  12. Lin, C. H.; Friddle, P, A.; Ma, C. H.; Daga, A.; Chen, H. J. Appl.Phys. 2001, 90, 1509. https://doi.org/10.1063/1.1383262
  13. Basceri, C.; Streiffer, S. K.; Kingon, A. I. J. Appl. Phys. 1997, 82,2497. https://doi.org/10.1063/1.366062

Cited by

  1. Substrate temperature-dependent physical properties of nanocrystalline zirconium titanate thin films vol.14, pp.5, 2017, https://doi.org/10.1007/s11998-017-9951-4
  2. Dielectric relaxation of Al/Lu2O3/Al thin film structures from 10μHz to 10MHz vol.353, pp.47, 2007, https://doi.org/10.1016/j.jnoncrysol.2007.01.096
  3. Synthesis of Zirconium Oxide Nanoballs Using Colloid-Imprinted Carbon and Their Electrical Properties vol.16, pp.2, 2002, https://doi.org/10.4313/teem.2015.16.2.86
  4. Effect of Argon/Oxygen Flow Rate Ratios on DC Magnetron Sputtered Nano Crystalline Zirconium Titanate Thin Films vol.68, pp.6, 2002, https://doi.org/10.1007/s11837-016-1910-5
  5. Gas-sensing properties of nanostructured TiO2-xZrO2 thin films obtained by the sol-gel method vol.92, pp.2, 2002, https://doi.org/10.1007/s10971-019-04979-4