DOI QR코드

DOI QR Code

A Study of the Gas Liquid Partition Coefficients of Eleven Normal, Branched and Cyclic Alkanes in Sixty Nine Common Organic Liquids: The Effect of Solute Structure


Abstract

Literature data measured by the author have been processed to report on the effect of solute structure on gas liquid partition coefficients of eleven normal, branched and cyclic alkanes ranging in carbon number from five to nine in sixty nine low molecular weight liquids. The alkane solutes are n-pentane(p), n-hexane(hx), n-heptane(hp), n-octane(o), n-nonane(n), 2-methylpentane(mp), 2,5-dimethylpentane(dp), 2,5-dimethylhexane(dh), 2,3,4-trimethylpentane(tp), cyclohexane(ch), and ethylcyclohexane(ec). The solvent set encompasses most of those studied by Rohrschneider as well as three homologous series of solvents (n-alkanes, 1-alcohols and 1-nitriles) and several perfluorinated alkanes and highly fluorinated alcohols. An excellent linear relationship was observed between lnK and the carbon number of n-alkanes. The effective carbon numbers of branched and cyclic alkanes were determined in a similar fashion to the method of Kovats index. We found that the logarithm of solute vapor pressure multiplied by solute molar volume was a perfect descriptor for the linear relationship with the median effective carbon number.

Keywords

References

  1. Ashworth, A. J. J. Chem. Soc. Faraday II 1973, 69, 459. https://doi.org/10.1039/f19736900459
  2. Ashworth, A. J.; Everett, D. H. Trans. Faraday Soc. 1960, 56,1609. https://doi.org/10.1039/tf9605601609
  3. Cruickshank, A. J. B.; Windsor, M. L.; Young, C. L. Proc. Roy.Soc. A 1966, 295, 271. https://doi.org/10.1098/rspa.1966.0240
  4. Conder, J. R.; Purnell, J. H. Trans. Faraday Soc. 1963, 59, 1655. https://doi.org/10.1039/tf9635901655
  5. Martire, D. E.; Pescsok, R. L.; Purnell, J. H. Trans. Faraday Soc.1965, 61, 2496. https://doi.org/10.1039/tf9656102496
  6. Prausnitz, J. M.; Lichtenthaler, R. M.; de Azevedo, E. G. Molecular Thermodynamics of Fluid Phase Equilibria, 2nd Ed.; Prentice Hall: Englewood Cliffs, 1986.
  7. Walas, S. M. Phase Equilibria in Chemical Engineering; ButterworthPublishers: Boston, 1985.
  8. Abraham, A. H.; Liszi, J. J. Chem. Soc. Faraday Soc. 1978, 74,1604. https://doi.org/10.1039/f19787401604
  9. Abraham, M. H. J. Am. Chem. Soc. 1979, 101, 5477. https://doi.org/10.1021/ja00513a004
  10. Huggins, M. L. J. Chem. Phys. 1941, 9, 440.
  11. Flory, P. J. J. Chem. Phys. 1941, 9, 660.
  12. Flory, P. J. Disc. Faraday Soc. 1970, 49, 7. https://doi.org/10.1039/df9704900007
  13. Flory, P. J. J. Chem. Phys. 1942, 10, 51. https://doi.org/10.1063/1.1723621
  14. Flory, P. J. Principles of Polymer Chemistry; Cornell UniversityPress: Ithaca, New York, 1953.
  15. Kauzman, W.; Eyring, H. J. Am. Chem. Soc. 1940, 62, 3113. https://doi.org/10.1021/ja01868a059
  16. Podriguez, T.; Patterson, D. J. Chem. Soc. Faraday Trans. II 1982,78, 501.
  17. Rodriguez, T.; Patterson, D. J. Chem. Soc. Faraday Trans II 1982,78, 491. https://doi.org/10.1039/f29827800491
  18. Park, J. H.; Hussam, A.; Couasnon, P.; Fritz, D.; Carr, P. W. Anal.Chem. 1987, 59, 1970. https://doi.org/10.1021/ac00142a016
  19. Cheong, W. J. PhD Thesis; Univ. of Minnesota: Minneapolis,1989.
  20. Conder, J. R.; Young, C. L. Physicochemical Measurrements byGas Chromatography; Wiley-Interscience: New York, 1978.
  21. Thomas, E. R.; Eckert, C. A. Ind. Eng. Chem. Process Des. Dev.1984, 23, 194. https://doi.org/10.1021/i200025a002
  22. Snyder, L. R. J. Chromatogr. Sci. 1978, 16, 223. https://doi.org/10.1093/chromsci/16.6.223
  23. Snyder, L. R. J. Chromatogr. 1974, 92, 223. https://doi.org/10.1016/S0021-9673(00)85732-5
  24. Rohrschneider, L. Anal. Chem. 1973, 45, 1241. https://doi.org/10.1021/ac60329a023
  25. Poppe, H.; Slaats, E. H. Chromatographia 1981, 14, 89. https://doi.org/10.1007/BF02279518
  26. Kamlet, M. J.; Taft, R. W.; Carr, P. W.; Abraham, M. H. J. Chem.Soc. Faraday I 1982, 78, 1689. https://doi.org/10.1039/f19827801689
  27. Castells, C. B.; Eikens, D. I.; Carr, P. W. J. Chem. Eng. Data 2000,45, 369. https://doi.org/10.1021/je990146h
  28. Castells, C. B.; Eikens, D. I.; Carr, P. W. J. Chem. Eng. Data 2000,45, 376. https://doi.org/10.1021/je990147+
  29. Castells, C. B.; Carr, P. W.; Eikens, D. I.; Bush, D.; Eckert, C. A.Ind. Eng. Chem. Res. 1999, 38, 4104. https://doi.org/10.1021/ie990096+
  30. Tiegs, D.; Gmehling, J.; Medina, A.; Soares, M.; Bastos, J.; Alessi, P.; Kikic, I. Acyivity Coefficients at Infinute Dilution Part I & II; Schon &Wetzel GmbH: Frankfurt/Main, F. R. Germany, 1986.
  31. Abraham, M. H.; Grellier, P. L.; McGill, R. A. J. Chem. Soc.Perkin Trans. II 1987, 1987, 797.
  32. Santacesaria, E.; Berlendis, D.; Carra, S. Fluid. Phase Equilb.1979, 3, 167. https://doi.org/10.1016/0378-3812(79)85008-6
  33. Kovats, E. Adv. Chromatogr. 1965, 1, 229.
  34. Hildebrand, J. H.; Scott, R. L. Regular Solutions; Prentice-Hall:Englewood Cliff, New Jersey, 1962.
  35. Scatchard, G. Chem. Rev. 1931, 8, 321. https://doi.org/10.1021/cr60030a010
  36. Wiliamson, A. G. Am. Rev. Phys. Chem. 1964, 15, 63. https://doi.org/10.1146/annurev.pc.15.100164.000431
  37. Cruickshank, A. J. B.; Windsor, M. L.; Young, C. L. Proc. Roy.Soc. A 1966, 295, 271. https://doi.org/10.1098/rspa.1966.0240
  38. Guggerheim, E. A. Proc. Roy. Soc. A 1944, 183, 213. https://doi.org/10.1098/rspa.1944.0033
  39. McGlashan, M. L.; Morcom, K. W.; Williamson, A. G. Trans.Faraday Soc. 1961, 59, 601.
  40. Luckhurst, G. R.; Martire, D. E. Trans. Faraday Soc. 1969, 65,1248. https://doi.org/10.1039/tf9696501248
  41. Dickson, J. N.; Daubert, T. E. Ind. Eng. Chem. Res. 1988, 27, 523. https://doi.org/10.1021/ie00075a025
  42. Massart, D. L.; Kaufman, L.: Rousseeuw, P. J.; Leroy, A. Anal.Chim. Acta 1986, 187, 171. https://doi.org/10.1016/S0003-2670(00)82910-4
  43. Rouseeuw, P. J. J. Am. Stat. Assoc. 1984, 79, 871. https://doi.org/10.2307/2288718
  44. Rouseeuw, P. J.; Leory, A. Robust Regression and Outlier Detection;Wiley-Science: New York, 1986.
  45. Gold, H. J. Anal. Chem. 1962, 34, 174. https://doi.org/10.1021/ac60181a059
  46. Kehiaian, H. V.; Renon, H. Measurement, Evaluation and Predictionof Phase Equilia; Elsevier, Amsterdam, 1986.
  47. Sayegh, S. G.; Vera, J. H. Chem. Eng. J. 1980, 19, 1. https://doi.org/10.1016/0300-9467(80)85071-4
  48. Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. AiChE J. 1975, 21,1086. https://doi.org/10.1002/aic.690210607
  49. Gmehling, J.; Rasmussen, P.; Fredenslund, A. Ind. Eng. Chem.Process Des. Dev. 1982, 21, 118. https://doi.org/10.1021/i200016a021
  50. Bondi, A. J. Phys. Chem. 1964, 68, 441. https://doi.org/10.1021/j100785a001
  51. Staverman, A. J. Rec. Trav. Chim. Pays-Bas 1950, 69, 163. https://doi.org/10.1002/recl.19500690203
  52. Guggenheim, E. A. Mixtures; Clarendon Press: Oxford, 1952.
  53. Ben-Naim, A.; Marcus, Y. J. Chem. Phys. 1984, 80, 4438. https://doi.org/10.1063/1.447224
  54. Ben-Naim, A. J. Phys. Chem. 1978, 82, 792. https://doi.org/10.1021/j100496a008
  55. Ben-Naim, A. Hydrophobic Interactions; Plenum Press: New York,1980.
  56. Ben-Naim, A. Biopolymers 1975, 14, 1337. https://doi.org/10.1002/bip.1975.360140704

Cited by

  1. Retention Indices for Most Frequently Reported Essential Oil Compounds in GC vol.69, pp.3-4, 2009, https://doi.org/10.1365/s10337-008-0872-3
  2. A Critical Examination of the Limiting Activity Coefficients of Normal Alkanes in Common Organic Liquids vol.24, pp.11, 2002, https://doi.org/10.5012/bkcs.2003.24.11.1708
  3. The Gas Liquid Partition Coefficients of Eleven Normal, Branched and Cyclic Alkanes in Sixty Nine Common Organic Liquids II: The Effect of Solvent Structure vol.24, pp.8, 2002, https://doi.org/10.5012/bkcs.2003.24.8.1207