DOI QR코드

DOI QR Code

Comparison of Potentials for Polymeric Liquids

고분자액체에 대한 포텐셜의 비교

  • Published : 2002.12.20

Abstract

Many theories for polymeric liquids are based on the concepts of cell, hole, free volume or lattice etc. In the theories, van der Waals potential, Lennard-Jones 6-12 potential and their modified potentials are commonly used.In this work, Mie(p, 6) potential was applied to the Continuous Lattice Fluid Theory (which extends the discrete lattices of Lattice Fluid Theory to classically continuous lattices) and Dee-Walsch's Cell Theory (which modifies Flory's Equa-tion of State Theory). Both of them are known to be successful theories for polymeric liquids. Thus, PVT values chang-ing with p (the exponent in the repulsion potential) were calculated and compared with experimental values. And, calculated values of Lattice Fluid Theory, Flory's Equation of State Theory and Cho-Sanchez Theory using pertubation method were also compared. Through the calculated results, van der Waals potential, Lennard-Jones 6-12 potential and Mie(p, 6) potential for polymeric liquids were compared with each other.

고분자액체에 대한 이론들은 많은 경우 cell, hole, free volume 또는 lattice 등의 개념에 근거를 두고 있다. 여기에 van der Waals 포텐셜이나 Lennard-Jones 6-12포텐셜 또는 이를 개선한 형태의 포텐셜을 보통 사용되고 있다. 본 연구에서는 고분자 액체를 설명?求?성공적인 이론으로 알려져 있는 격자유체이론에서 불연속적 격자를 고전적으로 연속적으로 격자로까지 확장한 연속격자유체이론과 Flory의 상태방정식이론을 개선한 Dee-Walsch의 Cell 이론에 각각 Mie(p,6)포텐셜을 적용하여 반발포텐셜항의 지수 p에 따른 PVT 값을 계산하여 실험값과 비교를 하였다. 또한 격자유체이론, Flory의 상태방정식이론, 섭동법을 이용한 Cho-Sanchez 이론의 계산값과도 비교를 하였다. 계산결과를 통하여 고분자액체에 대한 포텐셜로 Van der Waals 포텐셜, Lennaed-Jones 6-12 포텐셜, Mie(p,6)포텐셜들을 비교하였다.

Keywords

References

  1. Flory, P.J.; Orwoll, R.A.; Vrij, A.J. J. Am. Chem. Soc.1964, 86, 3507. https://doi.org/10.1021/ja01071a023
  2. Flory, P.J. J. Am. Chem. Soc. 1965, 87, 1833. https://doi.org/10.1021/ja01087a002
  3. Eichinger, E.; Flory, P.J. Trans. Faraday. Soc, 1968, 64,2035. https://doi.org/10.1039/tf9686402035
  4. Sanchez, I.C.; Lacombe, R.H. J. Phys. Chem. 1976, 80,2352. https://doi.org/10.1021/j100562a008
  5. Lacombe, R.H.; Sanchez, I.C. J. Phys. Chem. 1976, 80,2568. https://doi.org/10.1021/j100564a009
  6. Sanchez, I.C.; Lacombe, R.H. J. Polym. Sci. Polym.Lett. Ed. 1977, 15, 71. https://doi.org/10.1002/pol.1977.130150202
  7. Dee, G.T.; Walsh, D.J. Macromolecules 1988, 21, 811. https://doi.org/10.1021/ma00181a043
  8. Jung, H.Y. J. Korean. Chem. Soc. 2000, 44, 587.
  9. Jung, H.Y. Polymer Journal 1996, 28, 1048. https://doi.org/10.1295/polymj.28.1048
  10. Cho, J.; Sanchez, I.C. Macromolecules 1998, 31, 6650. https://doi.org/10.1021/ma971784c
  11. Sanchez, I.C.; Cho, J.; Chen, W.-J J. Phys. Chem. 1993,97, 6120. https://doi.org/10.1021/j100125a006
  12. Sanchez, I.C.; Cho, J.; Chen, W.-J Macromolecules1993, 26, 4234. https://doi.org/10.1021/ma00068a025
  13. Sanchez, I.C.; Cho, J. Polymer 1995, 36, 2929. https://doi.org/10.1016/0032-3861(95)94342-Q
  14. Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B MolecularTheory of Gases and Liquids; John Wiley & Sons;New York, U.S.A., 1954; p. 1040.
  15. Hildebrand, J.H.; Scott, R.L. The Solubility of Nonelectrolytes,3rd Ed.; Reinhold Publishing Corporation:New York, U.S.A., 1950; p 97.
  16. Olabisi, O.; Simha, R. Macromolecules 1975, 8, 206. https://doi.org/10.1021/ma60044a022
  17. McKinney, J.E.; Goldstein, M. J. Res. Natl. Bur. Stand.A 1974, 78, 331.
  18. Quach, A.; Simha, R. J. Appl. Phys. 1971, 42, 4592. https://doi.org/10.1063/1.1659828

Cited by

  1. 고분자용액의 부분 섞임성에 대한 셀이론과 격자유체이론의 비교 vol.49, pp.2, 2002, https://doi.org/10.5012/jkcs.2005.49.2.182