DOI QR코드

DOI QR Code

Synthesis and Characterization of New Polyaza Macrocyclic Nickel(Ⅱ) and Copper(Ⅱ) Complexes Two Nitrile or Imidate Ester Pendant Arms: Metal-Mediated Hydrolysis and Alcoholysis of the Nitrile Groups


초록

New di-N-cyanomethylated tetraaza macrocycle 2.13-bis(cyanomethyl)-5.16-dimethyl-2,6,13,17-tetraazatricyclo[$16.4.0.0^7.12$]docosane $(L^2)$ has been prepared by the reaction of 3, 14-dimethyl-2,6,13,17-tetraazatricyclo $(L^1)$ with bromoacetonitrile. The square-planar complexes $[ML^2](ClO_4)_2(M=Ni(II)$ or Cu(II) can be prepared by the reaction of $L^2$ with the corresponding metal ion in acetonitrile. The cyanomethyl groups of $[ML^2](ClO_4)_2readily$ react with water to $yield[ML^3](ClO_4)_2$ containing pendant amide groups. The trans-octahedral complexes $[ML^4](ClO_4)_2$, in which two imidate ester groups are coordinated to the metal ion, can be also prepared by the reaction of $[ML^2](ClO_4)_2with$ methanol under mild conditions. The hydrolysis and alcoholysis reactions of $[ML^2](ClO_4)_2are$ promoted by the central metal ion, in spite of the fact that the cyanomethyl group is not involved in intramolecular coordination. The reactions are also promoted by a base such as triethylamine but are retarded by an $acid(HClO_4).Interestingly$, the imidate ester groups of $[ML^4]^2$ are unusually resistant to hydrolysis even in 0.1 M $HCIO_4$ or 0.1 M NaOH aqueous solution. Crystal structure of $[NiL^4](ClO_4)_2shows$ that the Ni-N (pendant imidate ester group) bond is rlatively strong; the Ni-N bond distance is shorter then the Ni-N(tertiary) distance and is similar to the Ni-N (secondary) distance.

키워드

참고문헌

  1. Aneetha, H.; Lai, Y. H.; Lin, S.-C; Panneerselvam, K.; Lu, T.-H.; Chung, C.-S. J. Chem. Soc, Dalton Trans. 1999, 2885.
  2. Wainwright, K. P. J. Chem. Soc, Dalton Trans. 1983, 1149.
  3. Beer, P. D.; Crowe, D. B.; Ogden, M. I.; Drew, M. G. B.; Main, B. J. Chem. Soc, Dalton Trans. 1993, 2107.
  4. Suh, M. P.; Shim, B. Y.; Yoon, T.-S. Inorg. Chem. 1994, 33, 5509. https://doi.org/10.1021/ic00102a026
  5. Wainwright, K. P. J. Chem. Soc, Dalton Trans. 1980, 2117.
  6. Freeman, G. M.; Barefield, E. K.; Derveer, D. G. V. Inorg. Chem. 1984, 23, 3092. https://doi.org/10.1021/ic00188a015
  7. Kang, S.-G.; Ryu, K. Bull. Korean Chem. Soc. 2000, 21, 535.
  8. Kang, S.-G.; Ryu, K.; Kim, J. Bull. Korean Chem. Soc. In press.
  9. Comparone, A.; Kaden, T. A. Helv. Chim. Acta 1998, 81, 1765. https://doi.org/10.1002/(SICI)1522-2675(19981007)81:10<1765::AID-HLCA1765>3.0.CO;2-N
  10. Kaden, T. A. Chimia 2000, 54, 574.
  11. Creaser, 1.1.; Harrowfield, J. M.; Keene, F. R.; Sargeson, A. M. J. Am. Chem. Soc. 1981,103, 3559. https://doi.org/10.1021/ja00402a051
  12. Sanchez, G.; Serrano, J. L.; de Arellano, M. C. R.; Perez, J.; Lopez, G. Polyhedron 2000,19, 1395. https://doi.org/10.1016/S0277-5387(00)00427-7
  13. Segla, P.; Jamnicky, M.; Koman, M.; Sima, J.; Glowiak, T. Polyhedron 1998,17, 4525. https://doi.org/10.1016/S0277-5387(98)00259-9
  14. Prenzler, P. D.; Hockless, D. C. R.; Heath, G. A. Inorg. Chem. 1997, 36, 5845. https://doi.org/10.1021/ic970312b
  15. Michelin, R. A.; Mozzon, M.; Bertani, R. Coord. Chem. Rev. 1996,147, 299 and references cited therein. https://doi.org/10.1016/0010-8545(94)01128-1
  16. Murahashi, S.-L; Naota, T. Bull. Chem. Soc. Jpn. 1996, 69, 1805 and references cited therein. https://doi.org/10.1246/bcsj.69.1805
  17. Paul, P.; Nag, K. Inorg. Chem. 1987, 26, 1586. https://doi.org/10.1021/ic00257a024
  18. Kang, S.-G.; Kweon, J. K.; Jung, S.-K. Bull. Korean Chem. Soc. 1991,12, 483.
  19. Fair, C. K. Molen, An Interactive Intelligent System for Crystal Structure Analysis, Enraj-Nonius; Delft: The Netherlands, 1990.
  20. Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structure; University of Gottingen: Gottingen, Germany, 1990.
  21. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University of Gottingen: Gottingen, Germany, 1997.
  22. Choi, K.-Y; Lee, H.-H.; Park, B.-B.; Kim, J. PL; Kim, J.; Kim, M.-W.; Ryu, J.-W.; Suh, M.; Suh, I.-H. Polyhedron 2001, 20, 2002.
  23. Kang, S.-G.; Kim, M.-S.; Whang, D.; Kim, K. Inorg. Chim. Acta 1998, 279, 238. https://doi.org/10.1016/S0020-1693(98)00123-6
  24. Pallavicini, P. S.; Perotti, A.; Poggi, A.; Seghi, B.; Fabbrizzi, L. J. Am. Chem. Soc. 1987,109, 5139. https://doi.org/10.1021/ja00251a016
  25. Kang, S.-G.; Kim, M.-S.; Choi, J.-S.; Whang, D.; Kim, K. J. Chem. Soc, Dalton Trans. 1995, 363.
  26. Kang, S.-G.; Kim, S.-J.; Jeong, J. H. Polyhedron 1998,17, 3227. https://doi.org/10.1016/S0277-5387(98)00097-7
  27. Fortier, D. G.; McAuley, A. J. Am. Chem. Soc. 1990,112, 2640. https://doi.org/10.1021/ja00163a026

피인용 문헌

  1. -Disubstituted Amidine Pendant Arms: Metal-induced CN Bond Cleavage of the Amidine Group Involving a 14-Membered Tetraaza Macrocycle vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10260
  2. Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes vol.45, pp.34, 2016, https://doi.org/10.1039/C6DT02349E
  3. Synthesis and Characterization of an Open and a Cyclic Polyaza Complexes of Copper(II) Having Caged Moiety; Cyclization Through Copper(II) Enhanced Hydrolysis from Nitrile to Amide vol.38, pp.12, 2017, https://doi.org/10.1002/bkcs.11303
  4. ]copper(II) bis(perchlorate) dihydrate vol.66, pp.2, 2010, https://doi.org/10.1107/S1600536810003211
  5. Hydrolytic Metal-Mediated Coupling of Dialkylcyanamides at a Pt(IV) Center Giving a New Family of Diimino Ligands vol.42, pp.23, 2002, https://doi.org/10.1021/ic034800x
  6. Synthesis and Characterization of a Tetraaza Macrocyclic Nickel(II) Complex Bearing Two Amidine Pendant Arms: Unprecedented Strong Metal-Pendant Arm Interaction vol.26, pp.11, 2002, https://doi.org/10.5012/bkcs.2005.26.11.1861
  7. Quantum chemical studies on the potentially important imidates vol.861, pp.1, 2002, https://doi.org/10.1016/j.theochem.2008.04.011
  8. Synthesis and Characterization of TetraazaMacrocyclic Nickel(II) and Copper(II) Complexes Bearing Two Tetrazole Pendant Arms vol.30, pp.12, 2009, https://doi.org/10.5012/bkcs.2009.30.12.3101
  9. Stepwise reactions of two N–CH2CN or two N–CH2C(NH)OMe groups attached to macrocyclic copper(II) complexes: Preparation of homo- and hetero-di-N-functionalized macroc vol.362, pp.4, 2002, https://doi.org/10.1016/j.ica.2008.05.016
  10. Reactions of N-cyanomethyl groups attached to a tetraaza macrocyclic copper(II) complex leading to the formation of various hetero-functionalized macrocyclic complexes vol.363, pp.8, 2010, https://doi.org/10.1016/j.ica.2010.03.009
  11. Synthesis and Characterization of New Mono-N-functionalized Tetraaza Macrocyclic Nickel(II) and Copper(II) Complexes vol.32, pp.8, 2002, https://doi.org/10.5012/bkcs.2011.32.8.2565
  12. Investigation of metal cyclam complexes as potential catalysts for the production of dimethyl carbonate vol.392, pp.None, 2012, https://doi.org/10.1016/j.ica.2012.03.025
  13. Reduction of N-Cyanomethyl Groups on a Macrocyclic Nickel(II) Complex Using Sodium Borohydride: Synthesis of a Complex Bearing Two N-(2-Aminoethyl) Pendant Arms vol.35, pp.1, 2002, https://doi.org/10.5012/bkcs.2014.35.1.305