DOI QR코드

DOI QR Code

The Coordination Chemistry of DNA Nucleosides on Gold Nanoparticles as a Probe by SERS


Abstract

The DNA nucleosides(dA, dC, dG, dT)bound to gold nanoparticles (~13 nm) in aqueous solution has been studied as a probe by the SERS and their coordination structures have been proposed on the basis of them. According to UV-Visible absorption of gold nanoparticles after modifying with DNA nucleosides, the rates of absorption of dA, dC, and dG were much faster than that of dT as monitored by the aggregation kinetics at 700 nm. These data indicated that the nucleosides dA, dC, and dG had a higher affinity for the gold nanoparticles surface than nucleoside dT. As the result of SERS spectra, the binding modes of each of the nucleosides on gold nanoparticles have been assigned. A dA binds to gold nanoparticles via a N(7) nitrogen atom of the imidazole ring, which the C(6)-$NH_2$ group also participates in the coordination process. In the case of dC, it binds to the gold surface via a N(3) nitrogen atom of the pyrimidine ring with a partial contribution from the oxygen of C(2)=O group. A coordination of dG to the gold surfaces is also proposed. Although the dG has the two different nitrogens of a pyrimidine ring and the amino group, the N(1) nitrogen atom of a pyrimidine ring has a higher affinity after the hydrogen migrates to the amino group. Conversely, dT binds via the oxygen of the C(4)=O group of the pyrimidine ring. Accordingly, these data suggest that the nitrogen atom of the imidazole or the pyrimidine ring in the DNA nucleosides will bind more fast to the gold nanoparticles surfaces than the oxygen atom of the carbonyl group.

Keywords

References

  1. Xu, X. H.; Bard, A. J. J. Am. Chem. Soc. 1995, 117, 2627-2631. https://doi.org/10.1021/ja00114a027
  2. Mucic, R. C.; Herrlein, M. K.; Mirkin, C. A.; Letsinger, R. L. Chem. Commun. 1996, 555-557.
  3. Ihara, T.; Nakayama, M.; Murata, M.; Nakano, K.; Maeda, M. Chem. Commun. 1997, 1609-1619.
  4. Wang, J.; Paleeek, E.; Nielsen, P. E.; Rivas, G.; Cai, X.; Shiraishi, H.; Dontha, N.; Luo, D.; Farias, P. A. M. J. Am. Chem. Soc. 1996, 118, 7667-7670. https://doi.org/10.1021/ja9608050
  5. Thiel, A. J.; Frutos, A. G.; Jordan, C. E.; Corn, R. M.; Smih, L. M. Aanal. Chem. 1997, 69, 4948-4956. https://doi.org/10.1021/ac9708001
  6. Mirkin, C. A.; Letsinger, R. L.; Mucic, R. L.; Storhoff, J. J. Nature 1996, 382, 607-609. https://doi.org/10.1038/382607a0
  7. Elghanian, R.; Storhoff, J. J.; Mucic, R. L.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078-1081.
  8. Storhoff, J. J.; Elghanian, R.; Mucic, R. L.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959-1964. https://doi.org/10.1021/ja972332i
  9. Mahtab, R.; Rogers, J. P.; Murphy, C. J. J. Am. Chem. Soc. 1995, 117, 9099-9100. https://doi.org/10.1021/ja00140a040
  10. Alivisatos, A. P.; Johnsson, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Bruchez, Jr., M. P.; Schultz, P. G. Nature 1996, 382, 609-611. https://doi.org/10.1038/382609a0
  11. Hegner, M.; Wagner, P.; Semenza, G. FEBS Lett. 1993, 336, 452-456. https://doi.org/10.1016/0014-5793(93)80854-N
  12. Zimmermann, R. M.; Cox, E. C. Nucleic Acids Res. 1994, 22, 492-497. https://doi.org/10.1093/nar/22.3.492
  13. Surface Enhanced Raman Scattering; Chang, R. K.; Furtak, T. E., Eds.; Plenum Press: New York, 1982.
  14. Koglin, E.; Sequaris, J. M.; Valenta, P. J. Mol. Struct. 1980, 60, 421-425. https://doi.org/10.1016/0022-2860(80)80102-5
  15. Ervin, K. M.; Koglin, E.; Sequaris, J. M.; Valenta, P.; Nurnberg, H. W. J. Electroanal. Chem. 1980, 114, 179-194. https://doi.org/10.1016/S0022-0728(80)80446-3
  16. Watanabe, T.; Kawanami, O.; Katoh, H.; Honda, K. Surf. Sci. 1985, 158, 341-351. https://doi.org/10.1016/0039-6028(85)90309-7
  17. Koglin, E.; Lewinsky, H.; Sequaris, J. M. Surf. Sci. 1985, 158, 370-380. https://doi.org/10.1016/0039-6028(85)90312-7
  18. Koglin, E.; Sequaris, J. M.; Valenta, P. In Surface Studies with Lasers; Aussenegg, F. R.; Leitner, A.; Lippitsch, M. E., Eds.; Springer-Verlag: Berlin, 1983; pp 64-71.
  19. Sequaris, J. M.; Fritz, J.; Lewinsky, H.; Koglin, E. J. Coll. Interf. Sci. 1985, 105, 417-425. https://doi.org/10.1016/0021-9797(85)90315-7
  20. Koglin, E.; Sequaris, J. M.; Valenta, P. J. Mol. Struct. 1982, 79, 185-189. https://doi.org/10.1016/0022-2860(82)85050-3
  21. Koglin, E.; Sequaris, J. M.; Fritz, J. C.; Valenta, P. J. Mol. Struct. 1984, 114, 219-223. https://doi.org/10.1016/0022-2860(84)87131-8
  22. Otto, C.; van den Tweel, T. J. J.; de Mul, F. F. M.; Greve, J. J. Raman Spectrosc. 1986, 17, 289-298. https://doi.org/10.1002/jrs.1250170311
  23. Otto, C.; de Mul, F. F. M.; Huizinga, A.; Greve, J. J. Phys. Chem. 1988, 92, 1239-1244. https://doi.org/10.1021/j100316a046
  24. Suh, J. S.; Moskovits, M. J. Am. Chem. Soc. 1986, 108, 4711-4718. https://doi.org/10.1021/ja00276a005
  25. Koglin, E.; Sequaris, J. M. In Topics in Current Chemistry; Springer-Verlag: Berlin, 1986; Vol. 134, pp 1-57.
  26. Oh, W. S.; Kim, M. S.; Suh, S. W. J. Raman Spectrosc. 1987, 18, 253-258. https://doi.org/10.1002/jrs.1250180405
  27. Sanchez-Cortes, S.; Garcia-Ramos, J. V. Vib. Spectrosc. 1993, 4, 185-192. https://doi.org/10.1016/0924-2031(93)87037-T
  28. Camafeita, L. E.; Sanchez-Cortes, S.; Garcia-Ramos, J. V. J. Raman Spectrosc. 1995, 26, 149-154. https://doi.org/10.1002/jrs.1250260207
  29. Frens, G. Nature Phys. Sci. 1973, 241, 20-22. https://doi.org/10.1038/physci241020a0
  30. Creighton, J. A.; Blatchford, C. G.; Albrecht, M. G. J. Chem. Soc. Faraday Trans. II 1979, 75, 790-798. https://doi.org/10.1039/f29797500790
  31. Caldwell, W. B.; Campbell, D. J.; Chen, K.; Herr, B. R.; Mirkin, C. A.; Malik, A.; Durbin, M. K.; Dutta, P.; Huang, K. G. J. Am. Chem. Soc. 1995, 117, 6071-6082. https://doi.org/10.1021/ja00127a021
  32. Campbell, D. J.; Herr, B. R.; Hulteen, J. C.; Van Duyne, R. P.; Mirkin, C. A. J. Am. Chem. Soc. 1995, 118, 10211-10219. https://doi.org/10.1021/ja961873p
  33. Mathlouthi, M.; Seuvre, A.-M.; Koenig, J. Carbohydr. Res. 1984, 131, 1-15. https://doi.org/10.1016/0008-6215(84)85398-7
  34. Mathlouthi, M.; Seuvre, A.-M.; Koenig, J. Carbohydr. Res. 1986, 146, 1-13. https://doi.org/10.1016/0008-6215(86)85019-4
  35. Mathlouthi, M.; Seuvre, A.-M.; Koenig, J. Carbohydr. Res. 1984, 134, 23-38. https://doi.org/10.1016/0008-6215(84)85019-3
  36. Varsanyi, G. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives; John Wiley & Sons: New York, 1974; Vol. 1.
  37. Lin-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press: Boston, 1995.
  38. Gellert, R. W.; Bau, R. In Metal Ions in Biological Systems; Sigel, H., Ed.; Marcel Dekker: New York, 1979; Vol. 8; pp 1-55.
  39. Swaminathan, V.; Sundaralingam, M. CRC Crit. Rev. Biochem. 1979, 6, 245-336. https://doi.org/10.3109/10409237909102565
  40. Speca, A. N.; Mikulski, C. M.; Iaconianni, F. J.; Pytlewski, L. L.; Karayannis, N. M. J. Inorg. Nucl. Chem. 1981, 43, 2771-2779. https://doi.org/10.1016/0022-1902(81)80615-X
  41. Brabec, V.; Niki, K. Collect. Czech. Chem. Commun. 1986, 51, 167-174. https://doi.org/10.1135/cccc19860167
  42. Mikulski, C. M.; Cocco, S.; De Franco, N.; Moore, T.; Karayannis, N. M. Inorg. Chim. Acta 1985, 106, 89-95. https://doi.org/10.1016/S0020-1693(00)82254-9
  43. Mikulski, C. M.; Minutella, R.; De Franco, N.; Borges, Jr., G.; Karayannis, N. M. Inorg. Chim. Acta 1986, 123, 105-112. https://doi.org/10.1016/S0020-1693(00)84309-1
  44. Chu, G. Y. H.; Duncan, R. E.; Tobias, R. S. Inorg Chem. 1977, 16, 2625-2636. https://doi.org/10.1021/ic50176a040
  45. Kistenmacher, T. J.; Rossi, M.; Marzilli, L. G. Inorg. Chem. 1979, 18, 240-244. https://doi.org/10.1021/ic50192a007
  46. Faggiani, R.; Lippert, B.; Lock, C. G.; Pfab, R. Inorg. Chem. 1981, 20, 2381-2386. https://doi.org/10.1021/ic50222a005
  47. Graves, B. J.; Hodgson, D. J. J. Am. Chem. Soc. 1979, 101, 5608-5609. https://doi.org/10.1021/ja00513a026
  48. Vicens, M.; Fiol, J. J.; Terron, A.; Moreno, D. M. L. Inorg. Chim. Acta 1989, 157, 127-132. https://doi.org/10.1016/S0020-1693(00)83433-7
  49. Goodgame, M.; Johns, K. W. Inorg. Chim. Acta 1980, 46, 23-27. https://doi.org/10.1016/S0020-1693(00)84163-8
  50. Mikulski, C. M.; Lee, C. J.; Tran, T. B.; Karayannis, N. M. Inorg. Chim. Acta 1987, 136, L13-L15. https://doi.org/10.1016/S0020-1693(00)85550-4
  51. Reddy, P. R.; Adharani, T. K. Indian J. Chem. 1990, 29A, 1002-1007.
  52. Nelson, H. C.; Villa, J. F. J. Inorg. Nucl. Chem. 1980, 42, 133-135. https://doi.org/10.1016/0022-1902(80)80060-1
  53. Hadjiliadis, N.; Theophanides, T. Inorg. Chim. Acta 1976, 16, 77-88. https://doi.org/10.1016/S0020-1693(00)91694-3
  54. Chu, G. Y. H.; Tobias, R. S. J. Am. Chem. Soc. 1976, 98, 2541-2651.
  55. Chu, G. Y. H.; Tobias, R. S. J. Am. Chem. Soc. 1978, 100, 593-606. https://doi.org/10.1021/ja00470a039
  56. Fiol, J. J.; Terron, A.; Moreno, V. Inorg. Chim. Acta 1986, 125, 159-166. https://doi.org/10.1016/S0020-1693(00)84717-9
  57. Inorg. Chim. Acta v.125 Fiol, J.J;Terron, A;Moreno, V

Cited by

  1. Photoemission Study of Thymidine Adsorbed on Au(111) and Cu(110) vol.114, pp.35, 2010, https://doi.org/10.1021/jp105341k
  2. In situ Monitoring of Adipogenesis with Human-Adipose-Derived Stem Cells Using Surface-Enhanced Raman Spectroscopy vol.64, pp.11, 2010, https://doi.org/10.1366/000370210793335106
  3. Complexation of Deoxyadenosine and Deoxyadenosine-5′-Monophosphate (dAMP) on Ag and Au Surfaces vol.115, pp.29, 2011, https://doi.org/10.1021/jp204369f
  4. Interaction of mercury(II) ions with immobilized apo-metallothioneins studied by scanning electrochemical microscopy combined with surface plasmon resonance vol.174, pp.1-2, 2011, https://doi.org/10.1007/s00604-011-0598-z
  5. SERS study of methylated and nonmethylated ribonucleosides and the effect of aggregating agents vol.43, pp.2, 2011, https://doi.org/10.1002/jrs.3029
  6. Electronic Properties of DNA Nucleosides Adsorbed on a Au(100) Surface vol.116, pp.13, 2012, https://doi.org/10.1021/jp210229e
  7. Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles vol.137, pp.9, 2012, https://doi.org/10.1039/c2an35112a
  8. Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications vol.14, pp.30, 2012, https://doi.org/10.1039/c2cp41186e
  9. Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles vol.28, pp.8, 2012, https://doi.org/10.1021/la205036p
  10. Facile Approach to Grafting of Poly(2-oxazoline) Brushes on Macroscopic Surfaces and Applications Thereof vol.4, pp.3, 2012, https://doi.org/10.1021/am2016188
  11. Surface enhanced Raman spectroscopy of self-assembled monolayers of 2-mercaptopyridine on a gold electrode vol.48, pp.4, 2012, https://doi.org/10.1134/S1023193512030056
  12. Adsorption of Cytosine and AZA Derivatives of Cytidine on Au Single Crystal Surfaces vol.117, pp.36, 2013, https://doi.org/10.1021/jp404821t
  13. DNA Origami Substrates for Highly Sensitive Surface-Enhanced Raman Scattering vol.4, pp.23, 2013, https://doi.org/10.1021/jz402076b
  14. Structural nucleic acid nanotechnology: Liquid-crystalline approach vol.58, pp.6, 2013, https://doi.org/10.1134/S0006350913060079
  15. Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles vol.118, pp.2, 2014, https://doi.org/10.1021/jp410963z
  16. Label-free selective SERS detection of PCB-77 based on DNA aptamer modified SiO2@Au core/shell nanoparticles vol.139, pp.12, 2014, https://doi.org/10.1039/c4an00197d
  17. Theoretical and experimental studies of the interactions between Au2− and nucleobases vol.16, pp.7, 2014, https://doi.org/10.1039/c3cp54478h
  18. Gold nanostructures encoded by non-fluorescent small molecules in polyA-mediated nanogaps as universal SERS nanotags for recognizing various bioactive molecules vol.5, pp.11, 2014, https://doi.org/10.1039/C4SC01792G
  19. Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters vol.6, pp.17, 2014, https://doi.org/10.1039/C4NR02180K
  20. On-Site Visual Detection of Hydrogen Sulfide in Air Based on Enhancing the Stability of Gold Nanoparticles vol.6, pp.9, 2014, https://doi.org/10.1021/am500564w
  21. Gold Nanoparticle Interference Study during the Isolation, Quantification, Purity and Integrity Analysis of RNA vol.9, pp.12, 2014, https://doi.org/10.1371/journal.pone.0114123
  22. Study of Adenine and Guanine Oxidation Mechanism by Surface-Enhanced Raman Spectroelectrochemistry vol.119, pp.15, 2015, https://doi.org/10.1021/acs.jpcc.5b00938
  23. High Sensitivity, High Selectivity SERS Detection of MnSOD Using Optical Nanoantennas Functionalized with Aptamers vol.119, pp.27, 2015, https://doi.org/10.1021/acs.jpcc.5b03681
  24. Label-free detection of Phytophthora ramorum using surface-enhanced Raman spectroscopy vol.140, pp.21, 2015, https://doi.org/10.1039/C5AN01156F
  25. Gold nanoparticles for the bare-eye based and spectrophotometric detection of proteins, polynucleotides and DNA vol.182, pp.5-6, 2015, https://doi.org/10.1007/s00604-014-1408-1
  26. DNA–bare gold affinity interactions: mechanism and applications in biosensing vol.7, pp.17, 2015, https://doi.org/10.1039/C5AY01479D
  27. Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy vol.7, pp.46, 2015, https://doi.org/10.1039/C5NR05695K
  28. Gold nanoparticles and DNA liquid crystals vol.70, pp.3, 2015, https://doi.org/10.3103/S0027131415030037
  29. Physicochemical and nanotechnological approaches to the design of 'rigid' spatial structures of DNA vol.84, pp.1, 2015, https://doi.org/10.1070/RCR4454
  30. Preparation of Well-Defined DNA Samples for Reproducible Nanospectroscopic Measurements vol.12, pp.35, 2016, https://doi.org/10.1002/smll.201601711
  31. Tip-enhanced Raman spectroscopy: plasmid-free vs. plasmid-embedded DNA vol.141, pp.11, 2016, https://doi.org/10.1039/C6AN00350H
  32. Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA vol.141, pp.17, 2016, https://doi.org/10.1039/C6AN00911E
  33. Covalent and Non-Covalent DNA-Gold-Nanoparticle Interactions: New Avenues of Research vol.18, pp.1, 2016, https://doi.org/10.1002/cphc.201601077
  34. Binding Strength of Nucleobases and Nucleosides on Silver Nanoparticles Probed by a Colorimetric Method vol.32, pp.22, 2016, https://doi.org/10.1021/acs.langmuir.6b01192
  35. Highly Hybridizable Spherical Nucleic Acids by Tandem Glutathione Treatment and Polythymine Spacing vol.8, pp.19, 2016, https://doi.org/10.1021/acsami.6b00717
  36. Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection vol.88, pp.21, 2016, https://doi.org/10.1021/acs.analchem.6b02573
  37. Hemispherical platinum : silver core : shell nanoparticles for miRNA detection vol.142, pp.5, 2017, https://doi.org/10.1039/C6AN02609E
  38. Tip-Enhanced Raman Spectroscopy: A Tool for Nanoscale Chemical and Structural Characterization of Biomolecules vol.19, pp.1, 2017, https://doi.org/10.1002/cphc.201701067
  39. Small DNA additives to polyelectrolyte multilayers promote formation of ultrafine gold nanoparticles with enhanced catalytic activity pp.1435-1536, 2019, https://doi.org/10.1007/s00396-018-4432-6
  40. The Controversial Orientation of Adenine on Gold and Silver vol.19, pp.9, 2018, https://doi.org/10.1002/cphc.201701223
  41. Experimental and theoretical approaches for the selective detection of thymine in real samples using gold nanoparticles as a biochemical sensor vol.8, pp.43, 2018, https://doi.org/10.1039/C8RA02627K
  42. Adsorption of 6-mercaptopurine and 6-mercaptopurine-ribosideon silver colloid: A pH-dependent surface-enhanced Raman spectroscopy and density functional theory study. II. 6-mercaptopurine-riboside vol.78, pp.6, 2005, https://doi.org/10.1002/bip.20280
  43. Use of surface-enhanced Raman spectroscopy for the detection of human integrins vol.11, pp.2, 2006, https://doi.org/10.1117/1.2187022
  44. A SERS-Active Nanocrystalline Pd Substrate and its Nanopatterning Leading to Biochip Fabrication vol.4, pp.5, 2008, https://doi.org/10.1002/smll.200701075
  45. Effect of pH on the Interaction of Gold Nanoparticles with DNA and Application in the Detection of Human p53 Gene Mutation vol.4, pp.3, 2009, https://doi.org/10.1007/s11671-008-9228-z
  46. Using surface-enhanced Raman spectroscopy to probe for genetic markers on single-stranded DNA vol.15, pp.2, 2010, https://doi.org/10.1117/1.3400702
  47. A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar vol.144, pp.5, 2019, https://doi.org/10.1039/C8AN01745J
  48. Detection of differences in oligonucleotide-influenced aggregation of colloidal gold nanoparticles using absorption spectroscopy. vol.9, pp.6, 2004, https://doi.org/10.1117/1.1803847
  49. Preparation of Oligonucleotide Arrays with High-Density DNA Deposition and High Hybridization Efficiency vol.25, pp.11, 2002, https://doi.org/10.5012/bkcs.2004.25.11.1667
  50. Fabrication and Optical Characteristics of CdS/Ag Metal-Semiconductor Composite Quantum Dots vol.25, pp.6, 2002, https://doi.org/10.5012/bkcs.2004.25.6.934
  51. SERS Analysis of CMC on Gold-Assembled Micelle vol.25, pp.9, 2002, https://doi.org/10.5012/bkcs.2004.25.9.1392
  52. Photochemical Kinetics of Maleic to Fumaric Acid on Silver Nanoparticle Surfaces vol.26, pp.5, 2002, https://doi.org/10.5012/bkcs.2005.26.5.791
  53. SERS studies of the adsorption of guanine derivatives on gold colloidal nanoparticles vol.7, pp.20, 2005, https://doi.org/10.1039/b508850j
  54. Surface- and tip-enhanced Raman scattering of DNA components vol.37, pp.1, 2006, https://doi.org/10.1002/jrs.1480
  55. Synthesis of 28-membered macrocyclic polyammonium cations functionalized gold nanoparticles and their potential for sensing nucleotides vol.326, pp.2, 2002, https://doi.org/10.1016/j.jcis.2008.06.056
  56. New challenges for pharmaceutical formulations and drug delivery systems characterization using isothermal titration calorimetry vol.13, pp.21, 2002, https://doi.org/10.1016/j.drudis.2008.06.004
  57. Control of Metal Nanoparticles Aggregation and Dispersion by PNA and PNA−DNA Complexes, and Its Application for Colorimetric DNA Detection vol.3, pp.9, 2002, https://doi.org/10.1021/nn9005768
  58. Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone vol.207, pp.10, 2002, https://doi.org/10.1002/pssa.201026021
  59. SERS Analysis of Self-Assembled Monolayers of DNA Strands on Gold Surfaces vol.31, pp.1, 2002, https://doi.org/10.5012/bkcs.2010.31.01.213
  60. Mechanism of mercury detection based on interaction of single-strand DNA and hybridized DNA with gold nanoparticles vol.82, pp.5, 2002, https://doi.org/10.1016/j.talanta.2010.07.031
  61. Distinction of nucleobases – a tip-enhanced Raman approach vol.2, pp.None, 2011, https://doi.org/10.3762/bjnano.2.66
  62. Discovery of the DNA “Genetic Code” for Abiological Gold Nanoparticle Morphologies vol.124, pp.36, 2002, https://doi.org/10.1002/ange.201203716
  63. Discovery of the DNA “Genetic Code” for Abiological Gold Nanoparticle Morphologies vol.51, pp.36, 2002, https://doi.org/10.1002/anie.201203716
  64. Hydrogen bonds in the nucleobase-gold complexes: Photoelectron spectroscopy and density functional calculations (8 pages) vol.136, pp.1, 2002, https://doi.org/10.1063/1.3671945
  65. Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions vol.87, pp.None, 2012, https://doi.org/10.1016/j.saa.2011.11.012
  66. An improved DNA force field for ssDNA interactions with gold nanoparticles. vol.140, pp.23, 2002, https://doi.org/10.1063/1.4882657
  67. A new nanobiomaterial: particles of liquid-crystalline DNA dispersions with embedded clusters of gold nanoparticles vol.9, pp.3, 2002, https://doi.org/10.1134/s1995078014020074
  68. Ribosomal DNA Nanoprobes studied by Fourier Transform Infrared spectroscopy vol.118, pp.None, 2014, https://doi.org/10.1016/j.saa.2013.08.057
  69. Substitution versus redox reactions of gold(III) complexes with L-cysteine, L-methionine and glutathione vol.43, pp.10, 2002, https://doi.org/10.1039/c3dt53140f
  70. Quantification of nucleobases/gold nanoparticles interactions: energetics of the interactions through apparent binding constants determination vol.19, pp.33, 2002, https://doi.org/10.1039/c7cp03692b
  71. Bromide as a Robust Backfiller on Gold for Precise Control of DNA Conformation and High Stability of Spherical Nucleic Acids vol.140, pp.13, 2002, https://doi.org/10.1021/jacs.8b01510
  72. DNA structure change induced by guanosine radicals – A theoretical and spectroscopic study of proton radiation damage vol.1178, pp.None, 2002, https://doi.org/10.1016/j.molstruc.2018.10.032
  73. Electrocatalytic Water Oxidation with Surface Anchored Mononuclear Manganese (II) ‐ Polypyridine Complexes vol.4, pp.40, 2019, https://doi.org/10.1002/slct.201902953
  74. SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments vol.24, pp.21, 2019, https://doi.org/10.3390/molecules24213921
  75. Molecular Spectroscopic Markers of DNA Damage vol.25, pp.3, 2002, https://doi.org/10.3390/molecules25030561
  76. Detection and classification of fentanyl and its precursors by surface-enhanced Raman spectroscopy vol.145, pp.9, 2002, https://doi.org/10.1039/c9an02568e
  77. Biodistribution of Graphene Oxide Determined through Postadministration Labeling with DNA-Conjugated Gold Nanoparticles and ICPMS vol.92, pp.20, 2020, https://doi.org/10.1021/acs.analchem.0c02909
  78. Profiling DNA Damage Induced by the Irradiation of DNA with Gold Nanoparticles vol.12, pp.None, 2002, https://doi.org/10.1021/acs.jpclett.1c02598
  79. Raman Mapping of Biological Systems Interacting with a Disordered Nanostructured Surface: A Simple and Powerful Approach to the Label-Free Analysis of Single DNA Bases vol.12, pp.3, 2002, https://doi.org/10.3390/mi12030264
  80. Attachment of Single-Stranded DNA to Certain SERS-Active Gold and Silver Substrates: Selected Practical Tips vol.26, pp.14, 2002, https://doi.org/10.3390/molecules26144246
  81. Reliable colorimetric aptasensor exploiting 72-Mers ssDNA and gold nanoprobes for highly sensitive detection of aflatoxin M1 in milk vol.102, pp.None, 2002, https://doi.org/10.1016/j.jfca.2021.103992
  82. SERS and advanced chemometrics – Utilization of Siamese neural network for picomolar identification of beta-lactam antibiotics resistance gene fragment vol.1192, pp.None, 2002, https://doi.org/10.1016/j.aca.2021.339373
  83. Experimental and Theoretical Investigations of the Chemotherapeutic Drug Capecitabine vol.1250, pp.p2, 2022, https://doi.org/10.1016/j.molstruc.2021.131577