References
- Xu, X. H.; Bard, A. J. J. Am. Chem. Soc. 1995, 117, 2627-2631. https://doi.org/10.1021/ja00114a027
- Mucic, R. C.; Herrlein, M. K.; Mirkin, C. A.; Letsinger, R. L. Chem. Commun. 1996, 555-557.
- Ihara, T.; Nakayama, M.; Murata, M.; Nakano, K.; Maeda, M. Chem. Commun. 1997, 1609-1619.
- Wang, J.; Paleeek, E.; Nielsen, P. E.; Rivas, G.; Cai, X.; Shiraishi, H.; Dontha, N.; Luo, D.; Farias, P. A. M. J. Am. Chem. Soc. 1996, 118, 7667-7670. https://doi.org/10.1021/ja9608050
- Thiel, A. J.; Frutos, A. G.; Jordan, C. E.; Corn, R. M.; Smih, L. M. Aanal. Chem. 1997, 69, 4948-4956. https://doi.org/10.1021/ac9708001
- Mirkin, C. A.; Letsinger, R. L.; Mucic, R. L.; Storhoff, J. J. Nature 1996, 382, 607-609. https://doi.org/10.1038/382607a0
- Elghanian, R.; Storhoff, J. J.; Mucic, R. L.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078-1081.
- Storhoff, J. J.; Elghanian, R.; Mucic, R. L.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959-1964. https://doi.org/10.1021/ja972332i
- Mahtab, R.; Rogers, J. P.; Murphy, C. J. J. Am. Chem. Soc. 1995, 117, 9099-9100. https://doi.org/10.1021/ja00140a040
- Alivisatos, A. P.; Johnsson, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Bruchez, Jr., M. P.; Schultz, P. G. Nature 1996, 382, 609-611. https://doi.org/10.1038/382609a0
- Hegner, M.; Wagner, P.; Semenza, G. FEBS Lett. 1993, 336, 452-456. https://doi.org/10.1016/0014-5793(93)80854-N
- Zimmermann, R. M.; Cox, E. C. Nucleic Acids Res. 1994, 22, 492-497. https://doi.org/10.1093/nar/22.3.492
- Surface Enhanced Raman Scattering; Chang, R. K.; Furtak, T. E., Eds.; Plenum Press: New York, 1982.
- Koglin, E.; Sequaris, J. M.; Valenta, P. J. Mol. Struct. 1980, 60, 421-425. https://doi.org/10.1016/0022-2860(80)80102-5
- Ervin, K. M.; Koglin, E.; Sequaris, J. M.; Valenta, P.; Nurnberg, H. W. J. Electroanal. Chem. 1980, 114, 179-194. https://doi.org/10.1016/S0022-0728(80)80446-3
- Watanabe, T.; Kawanami, O.; Katoh, H.; Honda, K. Surf. Sci. 1985, 158, 341-351. https://doi.org/10.1016/0039-6028(85)90309-7
- Koglin, E.; Lewinsky, H.; Sequaris, J. M. Surf. Sci. 1985, 158, 370-380. https://doi.org/10.1016/0039-6028(85)90312-7
- Koglin, E.; Sequaris, J. M.; Valenta, P. In Surface Studies with Lasers; Aussenegg, F. R.; Leitner, A.; Lippitsch, M. E., Eds.; Springer-Verlag: Berlin, 1983; pp 64-71.
- Sequaris, J. M.; Fritz, J.; Lewinsky, H.; Koglin, E. J. Coll. Interf. Sci. 1985, 105, 417-425. https://doi.org/10.1016/0021-9797(85)90315-7
- Koglin, E.; Sequaris, J. M.; Valenta, P. J. Mol. Struct. 1982, 79, 185-189. https://doi.org/10.1016/0022-2860(82)85050-3
- Koglin, E.; Sequaris, J. M.; Fritz, J. C.; Valenta, P. J. Mol. Struct. 1984, 114, 219-223. https://doi.org/10.1016/0022-2860(84)87131-8
- Otto, C.; van den Tweel, T. J. J.; de Mul, F. F. M.; Greve, J. J. Raman Spectrosc. 1986, 17, 289-298. https://doi.org/10.1002/jrs.1250170311
- Otto, C.; de Mul, F. F. M.; Huizinga, A.; Greve, J. J. Phys. Chem. 1988, 92, 1239-1244. https://doi.org/10.1021/j100316a046
- Suh, J. S.; Moskovits, M. J. Am. Chem. Soc. 1986, 108, 4711-4718. https://doi.org/10.1021/ja00276a005
- Koglin, E.; Sequaris, J. M. In Topics in Current Chemistry; Springer-Verlag: Berlin, 1986; Vol. 134, pp 1-57.
- Oh, W. S.; Kim, M. S.; Suh, S. W. J. Raman Spectrosc. 1987, 18, 253-258. https://doi.org/10.1002/jrs.1250180405
- Sanchez-Cortes, S.; Garcia-Ramos, J. V. Vib. Spectrosc. 1993, 4, 185-192. https://doi.org/10.1016/0924-2031(93)87037-T
- Camafeita, L. E.; Sanchez-Cortes, S.; Garcia-Ramos, J. V. J. Raman Spectrosc. 1995, 26, 149-154. https://doi.org/10.1002/jrs.1250260207
- Frens, G. Nature Phys. Sci. 1973, 241, 20-22. https://doi.org/10.1038/physci241020a0
- Creighton, J. A.; Blatchford, C. G.; Albrecht, M. G. J. Chem. Soc. Faraday Trans. II 1979, 75, 790-798. https://doi.org/10.1039/f29797500790
- Caldwell, W. B.; Campbell, D. J.; Chen, K.; Herr, B. R.; Mirkin, C. A.; Malik, A.; Durbin, M. K.; Dutta, P.; Huang, K. G. J. Am. Chem. Soc. 1995, 117, 6071-6082. https://doi.org/10.1021/ja00127a021
- Campbell, D. J.; Herr, B. R.; Hulteen, J. C.; Van Duyne, R. P.; Mirkin, C. A. J. Am. Chem. Soc. 1995, 118, 10211-10219. https://doi.org/10.1021/ja961873p
- Mathlouthi, M.; Seuvre, A.-M.; Koenig, J. Carbohydr. Res. 1984, 131, 1-15. https://doi.org/10.1016/0008-6215(84)85398-7
- Mathlouthi, M.; Seuvre, A.-M.; Koenig, J. Carbohydr. Res. 1986, 146, 1-13. https://doi.org/10.1016/0008-6215(86)85019-4
- Mathlouthi, M.; Seuvre, A.-M.; Koenig, J. Carbohydr. Res. 1984, 134, 23-38. https://doi.org/10.1016/0008-6215(84)85019-3
- Varsanyi, G. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives; John Wiley & Sons: New York, 1974; Vol. 1.
- Lin-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press: Boston, 1995.
- Gellert, R. W.; Bau, R. In Metal Ions in Biological Systems; Sigel, H., Ed.; Marcel Dekker: New York, 1979; Vol. 8; pp 1-55.
- Swaminathan, V.; Sundaralingam, M. CRC Crit. Rev. Biochem. 1979, 6, 245-336. https://doi.org/10.3109/10409237909102565
- Speca, A. N.; Mikulski, C. M.; Iaconianni, F. J.; Pytlewski, L. L.; Karayannis, N. M. J. Inorg. Nucl. Chem. 1981, 43, 2771-2779. https://doi.org/10.1016/0022-1902(81)80615-X
- Brabec, V.; Niki, K. Collect. Czech. Chem. Commun. 1986, 51, 167-174. https://doi.org/10.1135/cccc19860167
- Mikulski, C. M.; Cocco, S.; De Franco, N.; Moore, T.; Karayannis, N. M. Inorg. Chim. Acta 1985, 106, 89-95. https://doi.org/10.1016/S0020-1693(00)82254-9
- Mikulski, C. M.; Minutella, R.; De Franco, N.; Borges, Jr., G.; Karayannis, N. M. Inorg. Chim. Acta 1986, 123, 105-112. https://doi.org/10.1016/S0020-1693(00)84309-1
- Chu, G. Y. H.; Duncan, R. E.; Tobias, R. S. Inorg Chem. 1977, 16, 2625-2636. https://doi.org/10.1021/ic50176a040
- Kistenmacher, T. J.; Rossi, M.; Marzilli, L. G. Inorg. Chem. 1979, 18, 240-244. https://doi.org/10.1021/ic50192a007
- Faggiani, R.; Lippert, B.; Lock, C. G.; Pfab, R. Inorg. Chem. 1981, 20, 2381-2386. https://doi.org/10.1021/ic50222a005
- Graves, B. J.; Hodgson, D. J. J. Am. Chem. Soc. 1979, 101, 5608-5609. https://doi.org/10.1021/ja00513a026
- Vicens, M.; Fiol, J. J.; Terron, A.; Moreno, D. M. L. Inorg. Chim. Acta 1989, 157, 127-132. https://doi.org/10.1016/S0020-1693(00)83433-7
- Goodgame, M.; Johns, K. W. Inorg. Chim. Acta 1980, 46, 23-27. https://doi.org/10.1016/S0020-1693(00)84163-8
- Mikulski, C. M.; Lee, C. J.; Tran, T. B.; Karayannis, N. M. Inorg. Chim. Acta 1987, 136, L13-L15. https://doi.org/10.1016/S0020-1693(00)85550-4
- Reddy, P. R.; Adharani, T. K. Indian J. Chem. 1990, 29A, 1002-1007.
- Nelson, H. C.; Villa, J. F. J. Inorg. Nucl. Chem. 1980, 42, 133-135. https://doi.org/10.1016/0022-1902(80)80060-1
- Hadjiliadis, N.; Theophanides, T. Inorg. Chim. Acta 1976, 16, 77-88. https://doi.org/10.1016/S0020-1693(00)91694-3
- Chu, G. Y. H.; Tobias, R. S. J. Am. Chem. Soc. 1976, 98, 2541-2651.
- Chu, G. Y. H.; Tobias, R. S. J. Am. Chem. Soc. 1978, 100, 593-606. https://doi.org/10.1021/ja00470a039
- Fiol, J. J.; Terron, A.; Moreno, V. Inorg. Chim. Acta 1986, 125, 159-166. https://doi.org/10.1016/S0020-1693(00)84717-9
- Inorg. Chim. Acta v.125 Fiol, J.J;Terron, A;Moreno, V
Cited by
- Photoemission Study of Thymidine Adsorbed on Au(111) and Cu(110) vol.114, pp.35, 2010, https://doi.org/10.1021/jp105341k
- In situ Monitoring of Adipogenesis with Human-Adipose-Derived Stem Cells Using Surface-Enhanced Raman Spectroscopy vol.64, pp.11, 2010, https://doi.org/10.1366/000370210793335106
- Complexation of Deoxyadenosine and Deoxyadenosine-5′-Monophosphate (dAMP) on Ag and Au Surfaces vol.115, pp.29, 2011, https://doi.org/10.1021/jp204369f
- Interaction of mercury(II) ions with immobilized apo-metallothioneins studied by scanning electrochemical microscopy combined with surface plasmon resonance vol.174, pp.1-2, 2011, https://doi.org/10.1007/s00604-011-0598-z
- SERS study of methylated and nonmethylated ribonucleosides and the effect of aggregating agents vol.43, pp.2, 2011, https://doi.org/10.1002/jrs.3029
- Electronic Properties of DNA Nucleosides Adsorbed on a Au(100) Surface vol.116, pp.13, 2012, https://doi.org/10.1021/jp210229e
- Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles vol.137, pp.9, 2012, https://doi.org/10.1039/c2an35112a
- Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications vol.14, pp.30, 2012, https://doi.org/10.1039/c2cp41186e
- Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles vol.28, pp.8, 2012, https://doi.org/10.1021/la205036p
- Facile Approach to Grafting of Poly(2-oxazoline) Brushes on Macroscopic Surfaces and Applications Thereof vol.4, pp.3, 2012, https://doi.org/10.1021/am2016188
- Surface enhanced Raman spectroscopy of self-assembled monolayers of 2-mercaptopyridine on a gold electrode vol.48, pp.4, 2012, https://doi.org/10.1134/S1023193512030056
- Adsorption of Cytosine and AZA Derivatives of Cytidine on Au Single Crystal Surfaces vol.117, pp.36, 2013, https://doi.org/10.1021/jp404821t
- DNA Origami Substrates for Highly Sensitive Surface-Enhanced Raman Scattering vol.4, pp.23, 2013, https://doi.org/10.1021/jz402076b
- Structural nucleic acid nanotechnology: Liquid-crystalline approach vol.58, pp.6, 2013, https://doi.org/10.1134/S0006350913060079
- Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles vol.118, pp.2, 2014, https://doi.org/10.1021/jp410963z
- Label-free selective SERS detection of PCB-77 based on DNA aptamer modified SiO2@Au core/shell nanoparticles vol.139, pp.12, 2014, https://doi.org/10.1039/c4an00197d
- Theoretical and experimental studies of the interactions between Au2− and nucleobases vol.16, pp.7, 2014, https://doi.org/10.1039/c3cp54478h
- Gold nanostructures encoded by non-fluorescent small molecules in polyA-mediated nanogaps as universal SERS nanotags for recognizing various bioactive molecules vol.5, pp.11, 2014, https://doi.org/10.1039/C4SC01792G
- Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters vol.6, pp.17, 2014, https://doi.org/10.1039/C4NR02180K
- On-Site Visual Detection of Hydrogen Sulfide in Air Based on Enhancing the Stability of Gold Nanoparticles vol.6, pp.9, 2014, https://doi.org/10.1021/am500564w
- Gold Nanoparticle Interference Study during the Isolation, Quantification, Purity and Integrity Analysis of RNA vol.9, pp.12, 2014, https://doi.org/10.1371/journal.pone.0114123
- Study of Adenine and Guanine Oxidation Mechanism by Surface-Enhanced Raman Spectroelectrochemistry vol.119, pp.15, 2015, https://doi.org/10.1021/acs.jpcc.5b00938
- High Sensitivity, High Selectivity SERS Detection of MnSOD Using Optical Nanoantennas Functionalized with Aptamers vol.119, pp.27, 2015, https://doi.org/10.1021/acs.jpcc.5b03681
- Label-free detection of Phytophthora ramorum using surface-enhanced Raman spectroscopy vol.140, pp.21, 2015, https://doi.org/10.1039/C5AN01156F
- Gold nanoparticles for the bare-eye based and spectrophotometric detection of proteins, polynucleotides and DNA vol.182, pp.5-6, 2015, https://doi.org/10.1007/s00604-014-1408-1
- DNA–bare gold affinity interactions: mechanism and applications in biosensing vol.7, pp.17, 2015, https://doi.org/10.1039/C5AY01479D
- Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy vol.7, pp.46, 2015, https://doi.org/10.1039/C5NR05695K
- Gold nanoparticles and DNA liquid crystals vol.70, pp.3, 2015, https://doi.org/10.3103/S0027131415030037
- Physicochemical and nanotechnological approaches to the design of 'rigid' spatial structures of DNA vol.84, pp.1, 2015, https://doi.org/10.1070/RCR4454
- Preparation of Well-Defined DNA Samples for Reproducible Nanospectroscopic Measurements vol.12, pp.35, 2016, https://doi.org/10.1002/smll.201601711
- Tip-enhanced Raman spectroscopy: plasmid-free vs. plasmid-embedded DNA vol.141, pp.11, 2016, https://doi.org/10.1039/C6AN00350H
- Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA vol.141, pp.17, 2016, https://doi.org/10.1039/C6AN00911E
- Covalent and Non-Covalent DNA-Gold-Nanoparticle Interactions: New Avenues of Research vol.18, pp.1, 2016, https://doi.org/10.1002/cphc.201601077
- Binding Strength of Nucleobases and Nucleosides on Silver Nanoparticles Probed by a Colorimetric Method vol.32, pp.22, 2016, https://doi.org/10.1021/acs.langmuir.6b01192
- Highly Hybridizable Spherical Nucleic Acids by Tandem Glutathione Treatment and Polythymine Spacing vol.8, pp.19, 2016, https://doi.org/10.1021/acsami.6b00717
- Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection vol.88, pp.21, 2016, https://doi.org/10.1021/acs.analchem.6b02573
- Hemispherical platinum : silver core : shell nanoparticles for miRNA detection vol.142, pp.5, 2017, https://doi.org/10.1039/C6AN02609E
- Tip-Enhanced Raman Spectroscopy: A Tool for Nanoscale Chemical and Structural Characterization of Biomolecules vol.19, pp.1, 2017, https://doi.org/10.1002/cphc.201701067
- Small DNA additives to polyelectrolyte multilayers promote formation of ultrafine gold nanoparticles with enhanced catalytic activity pp.1435-1536, 2019, https://doi.org/10.1007/s00396-018-4432-6
- The Controversial Orientation of Adenine on Gold and Silver vol.19, pp.9, 2018, https://doi.org/10.1002/cphc.201701223
- Experimental and theoretical approaches for the selective detection of thymine in real samples using gold nanoparticles as a biochemical sensor vol.8, pp.43, 2018, https://doi.org/10.1039/C8RA02627K
- Adsorption of 6-mercaptopurine and 6-mercaptopurine-ribosideon silver colloid: A pH-dependent surface-enhanced Raman spectroscopy and density functional theory study. II. 6-mercaptopurine-riboside vol.78, pp.6, 2005, https://doi.org/10.1002/bip.20280
- Use of surface-enhanced Raman spectroscopy for the detection of human integrins vol.11, pp.2, 2006, https://doi.org/10.1117/1.2187022
- A SERS-Active Nanocrystalline Pd Substrate and its Nanopatterning Leading to Biochip Fabrication vol.4, pp.5, 2008, https://doi.org/10.1002/smll.200701075
- Effect of pH on the Interaction of Gold Nanoparticles with DNA and Application in the Detection of Human p53 Gene Mutation vol.4, pp.3, 2009, https://doi.org/10.1007/s11671-008-9228-z
- Using surface-enhanced Raman spectroscopy to probe for genetic markers on single-stranded DNA vol.15, pp.2, 2010, https://doi.org/10.1117/1.3400702
- A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar vol.144, pp.5, 2019, https://doi.org/10.1039/C8AN01745J
- Detection of differences in oligonucleotide-influenced aggregation of colloidal gold nanoparticles using absorption spectroscopy. vol.9, pp.6, 2004, https://doi.org/10.1117/1.1803847
- Preparation of Oligonucleotide Arrays with High-Density DNA Deposition and High Hybridization Efficiency vol.25, pp.11, 2002, https://doi.org/10.5012/bkcs.2004.25.11.1667
- Fabrication and Optical Characteristics of CdS/Ag Metal-Semiconductor Composite Quantum Dots vol.25, pp.6, 2002, https://doi.org/10.5012/bkcs.2004.25.6.934
- SERS Analysis of CMC on Gold-Assembled Micelle vol.25, pp.9, 2002, https://doi.org/10.5012/bkcs.2004.25.9.1392
- Photochemical Kinetics of Maleic to Fumaric Acid on Silver Nanoparticle Surfaces vol.26, pp.5, 2002, https://doi.org/10.5012/bkcs.2005.26.5.791
- SERS studies of the adsorption of guanine derivatives on gold colloidal nanoparticles vol.7, pp.20, 2005, https://doi.org/10.1039/b508850j
- Surface- and tip-enhanced Raman scattering of DNA components vol.37, pp.1, 2006, https://doi.org/10.1002/jrs.1480
- Synthesis of 28-membered macrocyclic polyammonium cations functionalized gold nanoparticles and their potential for sensing nucleotides vol.326, pp.2, 2002, https://doi.org/10.1016/j.jcis.2008.06.056
- New challenges for pharmaceutical formulations and drug delivery systems characterization using isothermal titration calorimetry vol.13, pp.21, 2002, https://doi.org/10.1016/j.drudis.2008.06.004
- Control of Metal Nanoparticles Aggregation and Dispersion by PNA and PNA−DNA Complexes, and Its Application for Colorimetric DNA Detection vol.3, pp.9, 2002, https://doi.org/10.1021/nn9005768
- Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone vol.207, pp.10, 2002, https://doi.org/10.1002/pssa.201026021
- SERS Analysis of Self-Assembled Monolayers of DNA Strands on Gold Surfaces vol.31, pp.1, 2002, https://doi.org/10.5012/bkcs.2010.31.01.213
- Mechanism of mercury detection based on interaction of single-strand DNA and hybridized DNA with gold nanoparticles vol.82, pp.5, 2002, https://doi.org/10.1016/j.talanta.2010.07.031
- Distinction of nucleobases – a tip-enhanced Raman approach vol.2, pp.None, 2011, https://doi.org/10.3762/bjnano.2.66
- Discovery of the DNA “Genetic Code” for Abiological Gold Nanoparticle Morphologies vol.124, pp.36, 2002, https://doi.org/10.1002/ange.201203716
- Discovery of the DNA “Genetic Code” for Abiological Gold Nanoparticle Morphologies vol.51, pp.36, 2002, https://doi.org/10.1002/anie.201203716
- Hydrogen bonds in the nucleobase-gold complexes: Photoelectron spectroscopy and density functional calculations (8 pages) vol.136, pp.1, 2002, https://doi.org/10.1063/1.3671945
- Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions vol.87, pp.None, 2012, https://doi.org/10.1016/j.saa.2011.11.012
- An improved DNA force field for ssDNA interactions with gold nanoparticles. vol.140, pp.23, 2002, https://doi.org/10.1063/1.4882657
- A new nanobiomaterial: particles of liquid-crystalline DNA dispersions with embedded clusters of gold nanoparticles vol.9, pp.3, 2002, https://doi.org/10.1134/s1995078014020074
- Ribosomal DNA Nanoprobes studied by Fourier Transform Infrared spectroscopy vol.118, pp.None, 2014, https://doi.org/10.1016/j.saa.2013.08.057
- Substitution versus redox reactions of gold(III) complexes with L-cysteine, L-methionine and glutathione vol.43, pp.10, 2002, https://doi.org/10.1039/c3dt53140f
- Quantification of nucleobases/gold nanoparticles interactions: energetics of the interactions through apparent binding constants determination vol.19, pp.33, 2002, https://doi.org/10.1039/c7cp03692b
- Bromide as a Robust Backfiller on Gold for Precise Control of DNA Conformation and High Stability of Spherical Nucleic Acids vol.140, pp.13, 2002, https://doi.org/10.1021/jacs.8b01510
- DNA structure change induced by guanosine radicals – A theoretical and spectroscopic study of proton radiation damage vol.1178, pp.None, 2002, https://doi.org/10.1016/j.molstruc.2018.10.032
- Electrocatalytic Water Oxidation with Surface Anchored Mononuclear Manganese (II) ‐ Polypyridine Complexes vol.4, pp.40, 2019, https://doi.org/10.1002/slct.201902953
- SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments vol.24, pp.21, 2019, https://doi.org/10.3390/molecules24213921
- Molecular Spectroscopic Markers of DNA Damage vol.25, pp.3, 2002, https://doi.org/10.3390/molecules25030561
- Detection and classification of fentanyl and its precursors by surface-enhanced Raman spectroscopy vol.145, pp.9, 2002, https://doi.org/10.1039/c9an02568e
- Biodistribution of Graphene Oxide Determined through Postadministration Labeling with DNA-Conjugated Gold Nanoparticles and ICPMS vol.92, pp.20, 2020, https://doi.org/10.1021/acs.analchem.0c02909
- Profiling DNA Damage Induced by the Irradiation of DNA with Gold Nanoparticles vol.12, pp.None, 2002, https://doi.org/10.1021/acs.jpclett.1c02598
- Raman Mapping of Biological Systems Interacting with a Disordered Nanostructured Surface: A Simple and Powerful Approach to the Label-Free Analysis of Single DNA Bases vol.12, pp.3, 2002, https://doi.org/10.3390/mi12030264
- Attachment of Single-Stranded DNA to Certain SERS-Active Gold and Silver Substrates: Selected Practical Tips vol.26, pp.14, 2002, https://doi.org/10.3390/molecules26144246
- Reliable colorimetric aptasensor exploiting 72-Mers ssDNA and gold nanoprobes for highly sensitive detection of aflatoxin M1 in milk vol.102, pp.None, 2002, https://doi.org/10.1016/j.jfca.2021.103992
- SERS and advanced chemometrics – Utilization of Siamese neural network for picomolar identification of beta-lactam antibiotics resistance gene fragment vol.1192, pp.None, 2002, https://doi.org/10.1016/j.aca.2021.339373
- Experimental and Theoretical Investigations of the Chemotherapeutic Drug Capecitabine vol.1250, pp.p2, 2022, https://doi.org/10.1016/j.molstruc.2021.131577