DOI QR코드

DOI QR Code

Molecular Dynamics Simulations of the OSS2 Model for Water and Oxonium Ion Monomers, and Protonated Water Clusters

  • Lee, Song-Hi (Department of Chemistry, Kyungsung University)
  • Published : 2002.01.20

Abstract

The OSS2 (Oj?me-Shavitt-Singer 2)[L. Oj?me et al., J. Chem. Phys. 109, 5547 (1998)] model for the solvated proton in water is examined for $H_2O,\;H_3O^+,\;H_5O_2^+,\;H_7O_3^+,\;and\;H_9O_4^-$ by molecular dynamics (MD) simulations. The equilibrium molecular geometries and energies obtained from MD simulations at 5.0 and 298.15 K agree very well with the optimized calculations.

Keywords

References

  1. Stillinger, F. H.; David, C. W. J. Chem. Phys. 1978, 69, 1473 https://doi.org/10.1063/1.436773
  2. Stillinger, F. H.; David, C. W. J. Chem. Phys. 1980, 73, 3384 https://doi.org/10.1063/1.440534
  3. Stillinger, F. H.; Weber, T. A. Chem. Phys. Lett. 1981, 79, 259 https://doi.org/10.1016/0009-2614(81)80199-6
  4. Weber, T. A.; Stillinger, F. H. J. Phys. Chem. 1982, 86, 1314 https://doi.org/10.1021/j100397a020
  5. Weber, T. A.; Stillinger, F. H. J. Chem. Phys. 1982, 76, 4028 https://doi.org/10.1063/1.443523
  6. Weber, T. A.; Stillinger, F. H. J. Chem. Phys. 1982, 77, 4150 https://doi.org/10.1063/1.444324
  7. Ojame, L.; Shavitt, I.; Singer, S. J. J. Chem. Phys. 1998, 109, 5547 https://doi.org/10.1063/1.477173
  8. Singer, S. J.; McDonald, S.; Ojame, L. J. Chem. Phys. 2000, 112, 710 https://doi.org/10.1063/1.480603
  9. Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618 https://doi.org/10.1103/PhysRev.46.618
  10. Lee, S. H. Bull. Korean Chem. Soc. 2001, 22, 847
  11. Gauss, K. F. J. Reine Angew. Math. 1829, IV, 232
  12. Hoover, W. G.; Ladd, A. J. C.; Moran, B. Phys. Rec. Lett. 1982, 48, 1818 https://doi.org/10.1103/PhysRevLett.48.1818
  13. Evans, D. J. J. Chem. Phys. 1983, 78, 3297 https://doi.org/10.1063/1.445195
  14. Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, A. J. C. Phys. Rev. A 1983, 28, 1016 https://doi.org/10.1103/PhysRevA.28.1016
  15. Gear, W. C. Numerical Initial Value Problems in Ordinary Differential Equations; McGraw-Hill: New York, 1965
  16. Evans, D. J.; Morris, G. P. Comput. Phys. Rep. 1984, 1, 297 https://doi.org/10.1016/0167-7977(84)90001-7
  17. Benedict, W. S.; Gailar, N.; Plyler, E. K. J. Chem. Phys. 1956, 24, 1139 https://doi.org/10.1063/1.1742731
  18. Bunker, P. R.; Amano, T.; Spirko, V. J. Mol. Spectrosc. 1984, 107, 208 https://doi.org/10.1016/0022-2852(84)90277-7
  19. Spirko, V.; Kraemer, W. P. J. Mol. Spectrosc. 1989, 134, 72 https://doi.org/10.1016/0022-2852(89)90129-X
  20. de Leeuw, S. W.; Perram, J. W.; Smith, E. R. Proc. R. Soc. London 1980, A373, 27 https://doi.org/10.1098/rspa.1980.0135
  21. Anastasiou, N.; Fincham, D. Comput. Phys. Commun. 1982, 25, 159 https://doi.org/10.1016/0010-4655(82)90032-7
  22. Caldwell, J.; Dang, L. X.; Kollman, P. A. J. Am. Chem. Soc. 1990, 112, 9144 https://doi.org/10.1021/ja00181a017
  23. Dang, L. X.; Rice, J. E.; Caldwell, J.; Kollman, P. A. J. Am. Chem. Soc. 1991, 113, 2481 https://doi.org/10.1021/ja00007a021
  24. Dang, L. X. J. Chem. Phys. 1992, 96, 6970
  25. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950 https://doi.org/10.1063/1.465441
  26. Smith, D. E.; Dang, L. X. J. Chem. Phys. 1994, 100, 3757 https://doi.org/10.1063/1.466363
  27. Agmon, N. Chem. Phys. Lett. 2000, 319, 247 https://doi.org/10.1016/S0009-2614(00)00136-6
  28. Muguet, F. F. J. Mol. Struct. (Theochem) 1996, 368, 173 https://doi.org/10.1016/S0166-1280(96)90559-X
  29. Marx, D.; Tuckerman, M. E.; Hutter, J.; Parinello, M. Nature 1999, 397, 601 https://doi.org/10.1038/17579
  30. Ojame, L.; Shavitt, I.; Singer, S. J. Int. J. Quantum Chem., Quantum Chem. Symp. 1995, 29, 657
  31. Haymet, A. D. J.; Oxtoby, D. W. J. Chem. Phys. 1982, 77, 2466 https://doi.org/10.1063/1.444117
  32. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213 https://doi.org/10.1007/BF00533485
  33. Srewart, J. J. P. J. Comput. Phys. 1989, 10, 209; 1989, 10, 221; 1990, 11, 543

Cited by

  1. using Extended Simple Point Charge and Revised Polarizable Models vol.30, pp.10, 2004, https://doi.org/10.1080/08927020412331279910
  2. Conformational diversity in deprotonated water clusters and anharmonic infrared spectra pp.1029-0435, 2019, https://doi.org/10.1080/08927022.2018.1513653
  3. Molecular Dynamics Simulation Study of the Ionic Mobility of OH- Using the OSS2 Model vol.27, pp.8, 2002, https://doi.org/10.5012/bkcs.2006.27.8.1154
  4. The Radial Distribution Functions of the Scaled OSS2 Water vol.56, pp.6, 2002, https://doi.org/10.5012/jkcs.2012.56.6.669