Synthesis and Some Reactions of New Thieno[2,3-c]pyridazine Derivatives

Etify A. Bakhite, Omima S. Mohamed, and Shaban M. Radwan
Chemistry Deparment, Faculty of Science. Assiut Chiversith, Assiut 71516. Egvpt Recerved June 11. 2002

Abstract

Treatment of ethyll 5-hydroxy-3.4-diphenylthieno[2.3-c]pyridazine-6-carboxylate (1a) with hydrazine hydrate in ethanol gave the carbolydrazide 2. Some derivatives of the latter compound have been synthesized. Also. 6-acetyl-3.4-diphenyl-5-hydroxythieno[2.3-c]pyridazine (1b) was subjected to some reactions to produce other new thienopyridazine derivatives.

Key Words : Thienopyridazines, Pyranothienopyridazines. Pyrazoline, Oxadiazole

Introduction

Pyrridazines and condensed pyridazine derivatives are reported to have good biological activities and consequently. 4-phenylfuro[2.3-d]pyridazin-7-one used as intermediate for cardiovascular agents. ${ }^{1}$ Some thieno[3.4-d]pyridazines were used as modules of protein tyrosine phosphatases (PTpases). ${ }^{2}$ Also. some imidazo[$1.2-\mathrm{b}$]pyridazine derivatives are reported to possess antiasthmatic ${ }^{3}$ and analgesic activity. ${ }^{4}$ In view of the aforementioned facts and as a continuation of our previous work on the chemistry of pyridazine compounds. ${ }^{5-9}$ we report herein the synthesis of some heterocyclic systems containing thieno[$23-\mathrm{c}]$]pyridazine moiety. as new compounds in this field. of anticipated biological activities.

Results and Discussion

In our previous work. ${ }^{16}$ we proved that compounds 1a. \mathbf{b} exist predominantly in the enol form rather than keto form. Thus compound la reacts smoothly with hydrazine hydrate to give the corresponding carbohydrazide derivative 2 (Scheme 1).
Treatment of the carbohydrazide 2 with sodium nitrite in glacial acetic acid at room temperature produced the carboazide derivative 3 which underwent Curtits rearrangement followed by intramolecular cyclization upon refluxing in dry toluene to furnish oxazolo[$5^{\prime} \cdot 4^{\prime}: 4.5$]thieno[2.3-c]pyridazine 5 via the isocyanate intermediate 4 . Compound 2 also reacts with triethyl orthoformate benzaldehyde. acetic acid and / or phenyl isothiocyanate to afford compounds 6.7.8 and 9 respectively. Moroever heating of the thiourea derivative 9
with ethanolic sodium hydroxide solution afforded the triazolinethione derivative $\mathbf{1 0}$ (Scheme 2).

Furtheremore, refluxing of compound 6 in glacial acetic acid resulted in the formation of the oxadiazolyl derivative 11. instead of the tricyclic compound $\mathbf{1 2}$ via elimination of ethanol (Scheme 3).

Thieno[2.3-c]pyridazine derivative $\mathbf{1 b}$ reacts with hydrazine hydrate benzaldehyde and/or ethyl cyanoacetate in the presence of ammonium acetate to afford the expected compounds 13.14 and 15 , respectively. Upon heating of the styryl derivative $\mathbf{1 4}$ in a mixture of acetic acid and orthophosphoric acid. it readily cyclized into pyrano $\left[2^{\prime}, 3^{\prime} \cdot 4,5\right]-$ thieno[2,3-c]pyridazine derivative 16. The cyclocondensation reaction of 14 with hydrazine hydrate in refluxing ethanol gave the pyrazolinyl compound 17 (Scheme 4).

Experimental Section

All melting points are uncorrected and measured on a Fisher-Joln apparatus. IR spectra were recorded on Shimadzu 470 IR-spectrophotometer (KBr : $v_{\text {max }}$ in cm^{-1}): ${ }^{1} \mathrm{H}$-NMR spectra on a Varian EM-390, 90 MHz spectrometer with TMS as an internal standard (δ in ppm). MS were recorded on a Jeol JMS-600 mass spectrometer. Elemental analysis were carried out on Elementar Analysensystem GmbH VARIOEL V2.3 July 1998 CHNS Mode: their results were in good agreement with the calculated values.

5-Hydroxy-3,4-diphenylthieno [2,3-c]pyridazine-6-carbohydrazide (2): A mixture of compound la (3.6 g .0 .01 mol) and hydrazine hydrate $85 \%(5 \mathrm{~mL})$ in ethanol (30 mL) was heated under reflux for 5 hours. Upon cooling. the solid

Scheme 1

[^0]

TOluene: heat

Scheme 2

Scheme 3
product so formed was filtered off and recrystallized (ethanol) to give $2(73 \%)$ m.p.: $267-69^{\circ} \mathrm{C}$. IR: 3300.3200. $3150 \mathrm{~cm}^{-1}\left(\mathrm{OH} . \mathrm{NHNH}_{2}\right)$ and $\left.1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})\right)^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 4.1\left(\mathrm{~s} .2 \mathrm{H}_{2} \mathrm{NH}_{2}\right.$) , $\delta 7.2-7.4(\mathrm{~m} .10 \mathrm{H}, \mathrm{ArH}), \delta$ 8.2 (s. 1H. NH) and 10.5 (s. $1 \mathrm{H} . \mathrm{OH}$). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{1+} \mathrm{N}_{4} \mathrm{O}_{2} \mathrm{~S}(362.38): \mathrm{C} .62 .96: \mathrm{H} .3 .89: \mathrm{N} .15 .46: \mathrm{S} .8 .8 \%$. Found: C. 63.17 : H. 3.87: N. 15.60 , S. 9.11%.

3,4-Diphenyl-5-hydroxythieno[2,3-c]pyridazine-6-carboazide (3): To a well stirred solution of $2(0.5 \mathrm{~g})$ in glacial acetic acid (15 mL) was added at room temperature a solution of sodium nitrite (0.3 g in 5 mL water) and stirring was continued for three hours. The solid that formed was filtered off air dried and used in the next step without crystallization (65%). m.p.: $160{ }^{\circ} \mathrm{C}$ (dec.). IR: $3400-3100$ cm^{-1} (br., OH). $2120 \mathrm{~cm}^{-1}\left(\mathrm{~N}_{3}\right)$ and $1730 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. Anal. Cacd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ (373.36): C. 61.11: H. 2.96: N. 18.75: S. 8.58%. Found: C. 61.34: H. 3.11: N. 18.80: S. 8.70%.

3,4-Diphenyloxazolo[$\left.5^{\prime}, 4^{\prime}: 4,5\right]$ thieno[2,3-c]pyridazine$8(7 H)$-one (5): A solution of $3(0.5 \mathrm{~g})$ in dry toluene (10 mL) was refluxed for two hours and then allow to cool. The formed product was filtered off and recrysallized (acetic acid) to give $5(64 \%)$ m.p. : $276-278{ }^{\circ} \mathrm{C}$. IR: $3400 \mathrm{~cm}^{-1}$ (NH) and $1700 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. Anal. Cacd. for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ (345.34): C. 66.07 : H. 3.21: N. 12.16: S. 9.28%. Found: C. 66.13: H. 3.29: N. 12.35: S. 9.12%.

Reaction of 2 with triethyl orthoformate; Formation of the methanimidate derivative 6: A misture of $2(1 \mathrm{~g})$ and triethyl orthoformate (10 mL) was gently refluxed for 5 hours. The product precipitated after cooling was filtered off, washed with ethanol and recrystallized (ethanol/benzene) mixture to afford $6(73 \%)$ m.p.: $247^{\circ} \mathrm{C}$. IR: $3150 \mathrm{~cm}^{-1}(\mathrm{NH})$ and $1620 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (TFA): $\delta 1.1-1.3(\mathrm{t} .3 \mathrm{H}$. CH_{3}) , 4.1-4.3 (q. $2 \mathrm{H} . \mathrm{OCH}_{3}$), $7.2-7.5(\mathrm{~m} .10 \mathrm{H}, \mathrm{ArH}) .8 .1(\mathrm{~s}$. $1 \mathrm{H} . \mathrm{N}=\mathrm{CH}$) and 11.0 (s. 1H. OH). Anal. Cacd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (418.44): C. 63.13: H. 4.33: N. 13.38: S. 7.66%. Found: C. 62.98 : H. 4.21 : N. 13.44: S. 7.69%.
N^{1}-Benzylidene-3,4-diphenyl-5-hydroxythieno[2,3-c]pyri-dazine-6-carbohydrazide (7): A mixture of 2 (0.72 g. 0.002 mol) and benzaldehyde (0.12 mL .0 .002 mol) in ethanol (10 mL) was heated under reflux for two hours. The product formed after cooling was filtered off and recrystallized (acetic acid) to give $7\left(83 \%\right.$), m.p.: $300^{\circ} \mathrm{C}$. IR $3100 \mathrm{~cm}^{-1}$ (NH) and $1625 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}){ }^{1} \mathrm{H}$ NMR (TFA): $\delta 7.3-7.6(\mathrm{~m}$. $15 \mathrm{H} . \mathrm{ArH}) .8 .1(\mathrm{~s} .1 \mathrm{H} . \mathrm{N}=\mathrm{CH})$ and $11.0(\mathrm{~s} .1 \mathrm{H} . \mathrm{OH})$. Anal. Cacd. for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (450.48): C. 69.31: H. 4.02: N , 12.43: S. 7.11%. Found: C. 69.67 : H. 4.10: N. 12.32. S. 7.20%.

Reaction of 2 with acetic acid; Formation of the monoacetyl derivative 8: Compound 2 (1 g) in glacial acetic acid (15 mL) was refluxed for 6 hours. Upon cooling.

16

Scheme 4
the separated product was filtered off and recrystallized (ethanol) to give $8\left(67 \%\right.$). m.p.: $227-229^{\circ} \mathrm{C}$. IR 3300,3200 $\mathrm{cm}^{-1}(\mathrm{OH} . \mathrm{NH})$ and $1680.1620 \mathrm{~cm}^{-1}(2 \mathrm{C}=\mathrm{O})$. MS: $m z=$ $404(\mathrm{M}+)$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}(404.42)$ C. 62.36: H. 3.98: N. 13.85: S. 7.92%. Found:C. 62.50: H. 4.11: N. 13.78: S. 8.17%.

1-(3,+-Diphenylthieno $[2,3-$ - $]$ pyridazin- $6-\mathrm{yl})-+$-phenylthiosemicarbazide (9): A mixture of $2(1.1 \mathrm{~g} .0 .002 \mathrm{~mol})$ and phenyl isothiocyante (0.42 g . 0.003 mol) in ethanol (20 mL) was refluxed for 2 hours. After cooling. the precipitate that formed was filtered off. washed with ethanol and recrrstallized (acetic acid) to give $9(81 \%)$. m.p.: $236-238^{\circ} \mathrm{C}$. IR: $3300.3200 \mathrm{~cm}^{-1}(\mathrm{OH} . \mathrm{NH})$ and $1630 \mathrm{~cm}^{-1}$ (CO). Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}(497.56):$ C. $62.75 ;$ H. 3.84 : N . 14.07: S. 12.88%. Found: C. 62.90: H. 3.79: N. 14.11: S. 12.95%.
3,4-Diphenyl-5-hydroxy-6-(4-phenyl-3-thioxo-s-triazolin-5-yl)-thieno [2,3-c] pyridazine (10): A suspension of 9 (0.5 g. 0.001 mol) and $\mathrm{NaOH}(5 \mathrm{~mL}, 2 \mathrm{~N})$ was heated on a water bath for 5 hours. After cooling the reaction mixture was acidified with dilute HCl . The solid that formed was filtered off and recrystallized (ethanol) to give $\mathbf{1 0}$ (73%): m.p.: >300 ${ }^{\circ} \mathrm{C}$. IR: $3450 \mathrm{~cm}^{-1}(\mathrm{NH}), 3300 \mathrm{~cm}^{-1}(\mathrm{OH})$ and $1620 \mathrm{~cm}^{-1}$ $\left(\mathrm{C}=\mathrm{N}\right.$). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}_{2}(479.54): \mathrm{C} .65 .11: \mathrm{H}$. 3.57: N. 14.60: S. 13.37%. Found: C. 65.10: H. 3.47. N. 14.82: S. 13.60%.

3,4-Diphenyl-5-hydroxy-6-(1,3,4-oxdiazol-5-yl)-thieno-

 [2,3-c]pyridazine (11): Compound 6 (0.5 g) in glacial acetic acid (10 mL) was heated under reflux for 3 hours. After cooling. the product which separated was filtered off and recrystallized (acetic acid) to give $11\left(69 \%\right.$): m.p. $>300^{\circ} \mathrm{C}$.IR $3450-3200 \mathrm{~cm}^{-1}$ (br. OH). ${ }^{1} \mathrm{H}$ NMR (TFA): $\delta 7.2-7.4(\mathrm{~m}$. $10 \mathrm{H} . \mathrm{ArH}) .9 .2$ (s. $1 \mathrm{H} . \mathrm{CH}$ oxadiazole ring) and 11.5 (s. 1 H . OH). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}$ (372.37): C. 64.50: H. 3.21: N. 15.04 : S. 8.60%. Found: C. $64.60:$ H. 3.23: N. 15.16: S. 8.67%.

3,4-Diphenyl-5-hydroxythieno[2,3 -clpyridazine- 6 -acetylhydrazone (13): A mixture of $\mathbf{1 b}(0.5 \mathrm{~g})$ and hydrazine hydrate $85 \%(0.1 \mathrm{~mL}$) in ethanol (10 mL) was refluxed for two hours. Upon cooling. the precipitate that formed was filtered off and recrystallized (acetic acid) to give $13(82 \%)$. m.p.: $>300^{\circ} \mathrm{C}$. IR: $3400.3200 \mathrm{~cm}^{-1}(\mathrm{OH} . \mathrm{NH})$ and $1640 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d): $\delta 3.3$ (s. $3 \mathrm{H} . \mathrm{CH}_{3}$). 4.8 (s. 2 H. $\left.\mathrm{NH}_{2}\right)$. $7.3-7.6(\mathrm{~m} .10 \mathrm{H} . \mathrm{ArH})$ and at $10.5(\mathrm{~s} .1 \mathrm{H} . \mathrm{OH}) . \mathrm{MS}:$ $m z=360\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{2} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}(360.41): \mathrm{C}$. 66.64: H. 4.47: N. 15.54: S. 8.89%. Found: C. 66.80 : H. 4.42: N. 15.54: S. 8.89%.

Reaction of 1b with benzaldehyde; Formation of the styryl derivative 14: To a mixture of $\mathbf{1 b}$ (3.83 g .0 .01 mol) and benzaldehyde (1.5 mL .0 .015 mol) in absolute ethanol (30 mL). few drops of piperidine were added. The reaction mixture was heated under reflux for 5 hours. After cooling. the product so formed was filtered off and recrystallized (acetic acid) to give 14 (76%): m.p.: $240^{\circ} \mathrm{C}$. IR $3400-3250$ cm^{-1} (br. OH) and $1660 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}){ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$): $\delta 7.2-7.5(\mathrm{~m} .17 \mathrm{H} . \mathrm{ArH}$ and $\mathrm{CH}=\mathrm{CH})$ and at $10.5(\mathrm{~s} .1 \mathrm{H}$. OH). MS: $m z=434$ (M). Anal. Calcd. for $\mathrm{C}_{77} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (434.48): C. $74.63:$ H. 4.17 : N. 6.44: S. 7.37%. Found: C. 74.41: H. 4.19: N. 6.62: S. 7.52%.

7-Cyano-3,4-diphenyl-8-methylpyrano[$2^{\prime}, 3^{\prime}: 4, \mathbf{5}$]thieno-[2,3-c]pyridazine-6-one (15): A mixture of $\mathbf{1 b}$ (1.7 g. 0.005 mol). ethyl cyanoacetate (1.1 g .0 .01 mol) and ammonium
acetate (2 g) was gently refluxed for 4 hours. Upon cooling. the product that formed was filtered off, washed with water and recrystallized (acetic acid) to give $\mathbf{1 5}$ (63%): m.p.: >300 ${ }^{\circ} \mathrm{C}$. IR: $2200 \mathrm{~cm}^{-1}(\mathrm{CN})$ and $1770 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d 6): $\delta 3.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $7.2-73(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$. MS: $\mathrm{m} / \mathrm{z}=395\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}(395.43)$: C. 69.86: H. 3.31: N. 10.63: S. 8.11\%. Found: C. 69.70 : H. 3.34: N. 10.71 : S. 8.00%.

8-Oxo-6,7,8-trihydro-3,4,6-triphenylpyrano $\left[2^{\prime}, 3^{\prime}: 4,5\right]-$ thieno[2,3-c]pyridazine (16): A sample of $14(0.5 \mathrm{~g})$ in glacial acetic acid $(10 \mathrm{~mL})$ and orthophosphoric acid (4 mL) was heated at $100{ }^{\circ} \mathrm{C}$ for 3 hours. The cooled reaction mixture was diluted with water and neutralized with ammonia solution. The product that separated was filtered off washed with water and recrystallized (ethanol-chloroform) mixture to give $16(60 \%)$: m.p.: 263-265 ${ }^{\circ} \mathrm{C}$. IR 1700 cm^{-1} ($\mathrm{C}=0$. pyranone). ${ }^{1} \mathrm{H}$ NMR (DMSO-d): $\delta 2.7$ (d. 2 H . $\left.\mathrm{CH}_{2}\right) . \delta 4.7(\mathrm{t} .1 \mathrm{H} . \mathrm{CH})$ and d 7.3-7.6 (m. $\left.15 \mathrm{H} . \mathrm{ArH}\right)$. Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (434.48): C. 74.63: H. 4.17: N. 6.44: S. 7.37%. Found: C. 74.72 : H. 4.16: N. 6.73: S. 7.56%.

3,4-Diphenyl-5-hydroxy-(5-phenyl-D ${ }^{2}$-pyrazolin-3-yl)-thieno[2,3-c]pyridazine (17): A mixture $14(1 \mathrm{~g})$ and hydrazine hydrate $85 \%(0.4 \mathrm{~mL})$ in ethanol $(10 \mathrm{~mL})$ was refluxed for 3 hours. The solid product which formed on cooling was filtered off and recrystallized (ethanol) to give

17 (75\%): m.p.: $282-284^{\circ} \mathrm{C}$. IR: $3300.3050 \mathrm{~cm}^{-1}$ (NH. $\mathrm{OH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 3.0$ (s. 1H. NH pyrazoline). 3.3 (d. 2H. CH2 pyrazoline): 4.6 (t. 1H. CH pyrazoline). 7.2 $7.6(\mathrm{~m} .15 \mathrm{H} . \mathrm{ArH})$ and at $10.5(\mathrm{~s} .1 \mathrm{H} . \mathrm{OH})$. Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{OS}(448.51):$ C. 72.29: H, 4.49: N. 12.49: S. 7.14%. Found: C. 72.63 : H. 4.34: N. 12.60: S. 7.37%.

References

1. Iwase. N.: Ooshmia. M. Jpn. Kokai Tokkvo Koho IP 0733.773 [95. 33.775]: C. A. 1995. 122. 290874 g.
2. Andersent. H. S.: Branter. S.: Jeppensen. C. B.: Moller. N. P. H.: Surhav. S.: Mjalli. A. PCT. Int. APP. WO. 9915. 529. C.A. 1999. 130. 267445 g.
3. Kawano, M. Y; Shimaza, H:; Ashida. Y:; Myake. A. Chen. Pharm. Bull. 1996, H. 122.
4. Lurashi. E.: Arena. F.: Sacchi. A.: Lanemi. S.: Abignente. E.: Amico. M. D.: Berrino. L.: Rossi. F. Famaco 1995. 50. 439.
5. Abbady. M. S.: Radwan. Sh. M. Phosphorus, Sulfur and Silicon 1994. 86, 203.
6. Radwan. Sh. M.: Abbady, M. S.; El-Kashef. H. S. Phosphorus, Suffur and Silicon 1994, 89. 193.
7. Radwant. Sh. M.: Bahhite. E. A.: Kamal El-Dean. A. M. Bull. Fac. Sci. Assiut Unvi. 1994. 23. 1.
8. Radwan1. Sh. M. Phosphorus, Sulfur and Silicon 1999.155. 175.
9. Radwan1. Sh. M. Phosphorus. Sulfur and Siticon 2000. 165. 155.
10. Radwan. Sh. M.: Bakhite. E. A. Montash Chem. 1999. 199. 1117.

[^0]: Corresponding Author e-mail: etiafygaun.eun.eg

